留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Twist-engineered acoustic plasmon nanocavities enable deep-nanoscale terahertz molecular fingerprinting

Hongbo Zhang, Pengwei Li, Xiaoyu Yang, Wen Wan, Shu Chen, Guangyou Fang, Yiming Zhu, Songlin Zhuang. Twist-engineered acoustic plasmon nanocavities enable deep-nanoscale terahertz molecular fingerprinting[J]. PhotoniX. doi: 10.1186/s43074-025-00194-3
Citation: Hongbo Zhang, Pengwei Li, Xiaoyu Yang, Wen Wan, Shu Chen, Guangyou Fang, Yiming Zhu, Songlin Zhuang. Twist-engineered acoustic plasmon nanocavities enable deep-nanoscale terahertz molecular fingerprinting[J]. PhotoniX. doi: 10.1186/s43074-025-00194-3

doi: 10.1186/s43074-025-00194-3

Twist-engineered acoustic plasmon nanocavities enable deep-nanoscale terahertz molecular fingerprinting

Funds: S. Chen acknowledges support of the refractive index of GABA molecules from Dr. Bingwei Liu, Terahertz Technology Innovation Research Institute, University of Shanghai for Science and Technology.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Ferguson B, Zhang X-C. Materials for terahertz science and technology. Nat Mater. 2002;1:26–33.
    [2] Niessen KA, Xu M, George DK, et al. Protein and RNA dynamical fingerprinting. Nat Commun. 2019;10(1):1026.
    [3] Tonouchi M. Cutting-edge terahertz technology. Nat Photon. 2007;1:97–105.
    [4] Jin X, Aglieri V, Jeong YG, et al. Enhanced terahertz spectroscopy of a monolayer transition metal dichalcogenide. Adv Funct Mater. 2025;24:2419841.
    [5] Zhang Z, Wang Z, Zhang C, et al. Advanced terahertz refractive sensing and fingerprint recognition through metasurface-excited surface waves. Adv Mater. 2024;36:2308453.
    [6] Chen S, Autore M, Li J, et al. Acoustic graphene plasmon nanoresonators for field-enhanced infrared molecular spectroscopy. ACS Photonics. 2017;4:3089–97.
    [7] Rodrigo D, Limaj O, Janner D, et al. Mid-infrared plasmonic biosensing with graphene. Science. 2015;349:165–8.
    [8] Toma A, Tuccio S, Prato M, et al. Squeezing terahertz light into nanovolumes: Nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots. Nano Lett. 2014;15:386–91.
    [9] Baumberg JJ, Aizpurua J, Mikkelsen MH, et al. Extreme nanophotonics from ultrathin metallic gaps. Nat Mater. 2019;18:668–78.
    [10] Xu H, Aizpurua J, Käll M, et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E. 2000;62:4318–24.
    [11] Zhang R, Zhang Y, Dong ZC, et al. Chemical mapping of a single molecule by plasmon-enhanced raman scattering. Nature. 2013;498:82–6.
    [12] Chikkaraddy R, de Nijs B, Benz F, et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 2016;535:127–30.
    [13] Chen W, Zhang S, Deng Q, et al. Probing of sub-picometer vertical differential resolutions using cavity plasmons. Nat Commun. 2018;9:801.
    [14] Li C-Y, Duan S, Wen B-Y, et al. Observation of inhomogeneous plasmonic field distribution in a nanocavity. Nat Nanotechnol. 2020;15:922–6.
    [15] Li J, Wu D, Li J, et al. Ultrasensitive plasmon-enhanced infrared spectroelectrochemistry. Angew Chem Int Edit. 2024;63:e202319246.
    [16] Zhang X, Xu Q, Xia L, et al. Terahertz surface plasmonic waves: a review. Adv Photon. 2020;2:014001.
    [17] Aupiais I, Grasset R, Guo T, et al. Ultrasmall and tunable terahertz surface plasmon cavities at the ultimate plasmonic limit. Nat Commun. 2023;14:7645.
    [18] Keller J, Scalari G, Cibella S, et al. Few-electron ultrastrong light-matter coupling at 300 GHz with nanogap hybrid LC microcavities. Nano Lett. 2017;17:7410–5.
    [19] Chen J, Badioli M, Alonso-González P, et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature. 2012;487:77–81.
    [20] Fei Z, Rodin AS, Andreev GO, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature. 2012;487:82–5.
    [21] Chen S, Bylinkin A, Wang Z, et al. Real-space nanoimaging of THz polaritons in the topological insulator Bi2Se3. Nat Commun. 2022;13(1):1374.
    [22] Chen S, Leng PL, Konečná A, et al. Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat Mater. 2023;22:860–6.
    [23] Alonso-González P, Nikitin AY, Gao Y, et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat Nanotechnol. 2017;12:31–5.
    [24] Menabde SG, Heiden JT, Cox JD, et al. Image polaritons in van der Waals crystals. Nanophotonics. 2022;11:2433–52.
    [25] Stauber T, Gómez-Santos G. Plasmons in layered structures including graphene. New J Phys. 2012;14:105018.
    [26] Principi A, Asgari R, Polini M. Acoustic plasmons and composite hole-acoustic plasmon satellite bands in graphene on a metal gate. Solid State Commun. 2011;151:1627–30.
    [27] Gu X, Lin IT, Liu J-M. Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures. Appl Phys Lett. 2013;103:071103.
    [28] Lee I-H, Yoo D, Avouris P, et al. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat Nanotechnol. 2019;14:313–9.
    [29] Menabde SG, Lee IH, Lee S, et al. Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition. Nat Commun. 2021;12:938.
    [30] Oh S-H, Altug H, Jin X, et al. Nanophotonic biosensors harnessing van der Waals materials. Nat Commun. 2021;12:3824.
    [31] Sunku SS, Ni GX, Jiang BY, et al. Photonic crystals for nano-light in moiré graphene superlattices. Science. 2018;362:1153–6.
    [32] Huang T, Tu X, Shen C, et al. Observation of chiral and slow plasmons in twisted bilayer graphene. Nature. 2022;605:63–8.
    [33] Hu F, Das SR, Luan Y, et al. Real-space imaging of the tailored plasmons in twisted bilayer graphene. Phys Rev Lett. 2017;119:247402.
    [34] Hesp NCH, Torre I, Rodan-Legrain D, et al. Observation of interband collective excitations in twisted bilayer graphene. Nat Phys. 2021;17:1162–8.
    [35] Cavicchi L, Torre I, Jarillo-Herrero P, et al. Theory of intrinsic acoustic plasmons in twisted bilayer graphene. Phys Rev B. 2024;110(4):045431.
    [36] Zhang H, Fan X, Wang D, et al. Electric field-controlled damping switches of coupled dirac plasmons. Phys Rev Lett. 2022;129:237402.
    [37] Zhou C-L, Wu X-H, Zhang Y, et al. Polariton topological transition effects on radiative heat transfer. Phys Rev B. 2021;103:155404.
    [38] Liu Z, Zhang Z, Zhou F, et al. Dynamically tunable electro-optic switch and multimode filter based on twisted bilayer graphene strips. J Opt. 2021;23:025104.
    [39] Cui W, Wang Y, Xue J, et al. Terahertz sensing based on tunable fano resonance in graphene metamaterial. Results Phys. 2021;31:104994.
    [40] Moreno Á, Cavicchi L, Wang X, et al. Twisted bilayer graphene for enantiomeric sensing of chiral molecules. 2024, https://arxiv.org/abs/2409.05178.
    [41] Christensen J, Manjavacas A, Thongrattanasiri S, et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano. 2012;6:431–40.
    [42] Nikitin AY, Alonso-González P, Vélez S, et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat Photon. 2016;10:239–43.
    [43] Wu C, Duan Y, Yu L, et al. In-situ observation of silk nanofibril assembly via graphene plasmonic infrared sensor. Nat Commun. 2024;15:4643.
    [44] Chen S, Zhang Y, Shih T-M, et al. Plasmon-induced magnetic resonance enhanced raman spectroscopy. Nano Lett. 2018;18:2209–16.
    [45] Lyu J, Huang L, Chen L, et al. Review on the terahertz metasensor: from featureless refractive index sensing to molecular identification. Photonics Res. 2024;12:194–217.
    [46] Liu W, Zhou X, Zou S, et al. High-sensitivity polarization-independent terahertz Taichi-like micro-ring sensors based on toroidal dipole resonance for concentration detection of Aβ protein. Nanophotonics. 2023;12:1177–87.
    [47] Zhang J, Mu N, Liu L, et al. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency. Biosens Bioelectron. 2021;185:113241.
    [48] Tao H, Strikwerda AC, Liu M, et al. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications. Appl Phys Lett. 2010;97:261909.
    [49] Liu B, Peng Y, Jin Z, et al. Terahertz ultrasensitive biosensor based on wide-area and intense light-matter interaction supported by QBIC. Chem Eng J. 2023;462:142347.
    [50] Lan F, Luo F, Mazumder P, et al. Dual-band refractometric terahertz biosensing with intense wave-matter-overlap microfluidic channel. Biomed Opt Express. 2019;10:3789–99.
    [51] Amenabar I, Poly S, Nuansing W, et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat Commun. 2013;4:2890.
    [52] Röcker C, Pötzl M, Zhang F, et al. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol. 2009;4:577–80.
    [53] Liu B, Chen S, Zhang J, et al. A Plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm. Adv Mater. 2018;30:e1706031.
    [54] Qiu S, Zhang H, Shi Z, et al. Ultrasensitive refractive index sensing based on hybrid high-Q metasurfaces. J Phys Chem C. 2023;127:8263–70.
    [55] Zhang S, Bao K, Halas NJ, et al. Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 2011;11:1657–63.
    [56] Verellen N, Van Dorpe P, Huang C, et al. Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett. 2011;11:391–7.
    [57] Dolado I, Maciel-Escudero C, Nikulina E, et al. Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators. Nat Commun. 2022;13:6850.
    [58] Bylinkin A, Schnell M, Autore M, et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat Photonics. 2020;15:197–202.
    [59] Le F, Brandl DW, Urzhumov YA, et al. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano. 2008;2:707–18.
    [60] Chen W, Zhang S, Kang M, et al. Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe. Light Sci Appl. 2018;7:56.
    [61] Liu B, Peng Y, Hao Y, et al. Ultra-wideband terahertz fingerprint enhancement sensing and inversion model supported by single-pixel reconfigurable graphene metasurface. Photonix. 2024;5:10.
    [62] Halas NJ, Lal S, Chang W-S, et al. Plasmons in strongly coupled metallic nanostructures. Chem Rev. 2011;111:3913–61.
    [63] Neubrech F, Huck C, Weber K, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem Rev. 2017;117:5110–45.
    [64] Wang YH, Zheng S, Yang WM, et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature. 2021;600:81–5.
    [65] Wen BY, Wang JY, Shen TL, et al. Manipulating the light-matter interactions in plasmonic nanocavities at 1 nm spatial resolution. Light Sci Appl. 2022;11:235.
    [66] Damari R, Weinberg O, Krotkov D, et al. Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies. Nat Commun. 2019;10:3248.
    [67] Zhang T, Chen S, Petkov PS, et al. Two-dimensional polyaniline crystal with metallic out-of-plane conductivity. Nature. 2025;638:411–7.
    [68] Zizlsperger M, Nerreter S, Yuan Q, et al. In situ nanoscopy of single-grain nanomorphology and ultrafast carrier dynamics in metal halide perovskites. Nat Photon. 2024;18:975–81.
    [69] Lundeberg MB, Gao Y, Asgari R, et al. Tuning quantum nonlocal effects in graphene plasmonics. Science. 2017;357:187–91.
    [70] Zhu W, Esteban R, Borisov AG, et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat Commun. 2016;7:11495.
    [71] Li P, Wang H, Turup Z, et al. Efficient manipulation of plasmonic modes in single symmetry-breaking Ag nanocube. Appl Surf Sci. 2023;611:155650.
    [72] Stefan AM. (Ed.). World Scientific handbook of metamaterials and plasmonics (Vol. 4). Singapore: World Scientific Publishing Co. Pte. Ltd.; 2017.
    [73] Giustino F, Umari P, Pasquarello A. Dielectric effect of a thin SiO2 interlayer at the interface between silicon and high-k oxides. Microelectron Eng. 2004;72:299–303.
    [74] Huang S, Ming T, Lin Y, et al. Ultrasmall mode volumes in plasmonic cavities of nanoparticle-on-mirror structures. Small. 2016;12:5190–9.
    [75] Li X, Smalley JST, Li ZT, Gu Q. Effective modal volume in nanoscale photonic and plasmonic near-infrared resonant cavities. Appl Sci. 2018;8:1646.
计量
  • 文章访问数:  22
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-07
  • 录用日期:  2025-08-24
  • 修回日期:  2025-08-10
  • 网络出版日期:  2025-11-25

目录

    /

    返回文章
    返回