留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mid-infrared single-pixel imaging via two-photon optical encoding

Huijie Ma, Kun Huang, Jianan Fang, Ziyu He, Yan Liang, Heping Zeng. Mid-infrared single-pixel imaging via two-photon optical encoding[J]. PhotoniX. doi: 10.1186/s43074-025-00195-2
Citation: Huijie Ma, Kun Huang, Jianan Fang, Ziyu He, Yan Liang, Heping Zeng. Mid-infrared single-pixel imaging via two-photon optical encoding[J]. PhotoniX. doi: 10.1186/s43074-025-00195-2

doi: 10.1186/s43074-025-00195-2

Mid-infrared single-pixel imaging via two-photon optical encoding

Funds: Shanghai Pilot Program for Basic Research (TQ20220104), National Natural Science Foundation of China (62175064, 62235019, 62035005), Innovation Program for Quantum Science and Technology (2023ZD0301000), Shanghai Municipal Science and Technology Major Project (2019SHZDZX01); Natural Science Foundation of Chongqing (CSTB2023NSCQ-JQX0011, CSTB2022TIAD-DEX0036), China Post doctoral Science Foundation (2024M760918, 2025T180224).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Cheng J-X, Xie XS. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science. 2015;350:aaa8870.
    [2] Vodopyanov KL. Laser-based Mid-infrared Sources and Applications. John Wiley & Sons, Inc.; 2020.
    [3] Shi L, Liu X, Shi L, Stinson HT, Rowlette J, Kahl LJ, et al. Mid-infrared metabolic imaging with vibrational probes. Nat Methods. 2020;17:844.
    [4] Israelsen NM, Petersen CR, Barh A, Jain D, Jensen M, Hannesschläger G, et al. Real-time high-resolution mid-infrared optical coherence tomography. Light Sci Appl. 2019;8:114.
    [5] Rogalski A. Recent progress in infrared detector technologies. Infrared Phys Technol. 2011;54:136–54.
    [6] Taylor GG, Walter AB, Korzh B, Bumble B, Patel SR, Allmaras JP, et al. Low-noise single-photon counting superconducting nanowire detectors at infrared wavelengths up to 29 μm. Optica. 2023;10:1672.
    [7] Guo Q, Yu R, Li C, Yuan S, Deng B, García FJ, et al. Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nat Mater. 2018;17:986–92.
    [8] Bullock J, Amani M, Cho J, Chen Y-Z, Ahn GH, Adinolfi V, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat Photon. 2018;12:601–7.
    [9] Xue X, Chen M, Luo Y, Qin T, Tang X, Hao Q. High-operating-temperature mid-infrared photodetectors via quantum dot gradient homojunction. Light Sci Appl. 2023;12:2.
    [10] Wang P, Xia H, Li Q, Wang F, Zhang L, Li T, et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers. Small. 2019;15:46.
    [11] Hadfield RH. Single-photon detectors for optical quantum information applications. Nat Photon. 2009;3:696–705.
    [12] Barh A, Rodrigo PJ, Meng L, Pedersen C, Tidemand-Lichtenberg P. Parametric upconversion imaging and its applications. Adv Opt Photon. 2019;11:952.
    [13] Kviatkovsky I, Chrzanowski HM, Avery EG, Bartolomaeus H, Ramelow S. Microscopy with undetected photons in the mid-infrared. Sci Adv. 2020;6:eabd0264.
    [14] Paterova AV, Maniam SM, Yang H, Grenci G, Krivitsky LA. Hyperspectral infrared microscopy with visible light. Sci Adv. 2020;6:eabd0460.
    [15] Cai Y, Chen Y, Dorfman K, Xin X, Wang X, Huang K, et al. Mid-infrared single-photon upconversion spectroscopy enabled by nonlocal wavelength-to-time mapping. Sci Adv. 2024;10:eadl3503.
    [16] Dam JS, Tidemand-Lichtenberg P, Pedersen C. Room-temperature mid-infrared single-photon spectral imaging. Nat Photon. 2012;6:788.
    [17] Huang K, Fang J, Yan M, Wu E, Zeng H. Wide-field mid-infrared single-photon upconversion imaging. Nat Commun. 2022;13:1077.
    [18] Ge Z, Han Z, Liu Y, Wang X, Zhou Z, Yang F, et al. Midinfrared up-conversion imaging under different illumination conditions. Phys Rev Appl. 2023;20(5):054060.
    [19] Rehain P, Sua YM, Zhu S, Dickson I, Muthuswamy B, Ramanathan J, et al. Noise-tolerant single photon sensitive three-dimensional imager. Nat Commun. 2020;11:921.
    [20] Boitier F, Dherbecourt J-B, Godard A, Rosencher E. Infrared quantum counting by nondegenerate two photon conductivity in GaAs. Appl Phys Lett. 2009;94:191104.
    [21] Fang J, Wang Y, Yan M, Wu E, Huang K, Zeng H. Highly sensitive detection of infrared photons by nondegenerate two-photon absorption under midinfrared pumping. Phys Rev Appl. 2020;14:064035.
    [22] Pearl S, Rotenberg N, Driel HM. Three photon absorption in silicon for 2300–3300 nm. Appl Phys Lett. 2008;93:131102.
    [23] Nevet A, Hayat A, Orenstein M. Ultrafast three-photon counting in a photomultiplier tube. Opt Lett. 2011;36:725–7.
    [24] Fishman DA, Cirloganu CM, Webster S, Padilha LA, Monroe M, Hagan DJ, et al. Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption. Nat Photon. 2011;5:561–5.
    [25] Boiko DL, Antonov AV, Kuritsyn DI, Yablonskiy AN, Sergeev SM, Orlova EE, et al. Mid-infrared two photon absorption sensitivity of commercial detectors. Appl Phys Lett. 2017;111(17):171102.
    [26] Piccardo M, Rubin NA, Meadowcroft L, Chevalier P, Yuan H, Kimchi J, et al. Mid-infrared two-photon absorption in an extended-wavelength InGaAs photodetector. Appl Phys Lett. 2018;112:041106.
    [27] Knez D, Hanninen AM, Prince RC, Potma EO, Fishman DA. Infrared chemical imaging through non-degenerate two-photon absorption in silicon-based cameras. Light Sci Appl. 2020;9:125.
    [28] Liu W, Shen D, Zhao G, Yan H, Zhou Z, Wan W. Spatial narrowing of two-photon imaging in a silicon CCD camera. IEEE Phot Technol Lett. 2022;34:459.
    [29] Knez D, Toulson BW, Chen A, Ettenberg MH, Nguyen H, Potma EO, Fishman DA. Spectral imaging at high definition and high speed in the mid-infrared. Sci Adv. 2022;8:eade4247.
    [30] Fang J, Wang Y, Wu E, Yan M, Huang K, Zeng H. Single-photon infrared imaging with a silicon camera based on long-wavelength-pumping two-photon absorption. IEEE J Sel Top Quantum Electron. 2021;28:1–7.
    [31] Pattanaik HS, Reichert M, Hagan DJ, Van Stryland EW. Three-dimensional IR imaging with uncooled GaN photodiodes using nondegenerate two-photon absorption. Opt Express. 2016;24:1196.
    [32] Edgar MP, Gibson GM, Padgett MJ. Principles and prospects for single-pixel imaging. Nat Photon. 2019;13:13–20.
    [33] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition. Nat Commun. 2015;6:6225.
    [34] Kilcullen P, Ozaki T, Liang J. Compressed ultrahigh-speed single-pixel imaging by swept aggregate patterns. Nat Commun. 2022;13:7879.
    [35] Meng H, Gao Y, Wang X, Li X, Wang L, Zhao X, et al. Quantum dot-enabled infrared hyperspectral imaging with single-pixel detection. Light Sci Appl. 2024;13:121.
    [36] Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KF, et al. Single-pixel imaging via compressive sampling. IEEE Signal Process Mag. 2008;25:83–91.
    [37] Bian L, Suo J, Dai Q, Chen F. Experimental comparison of single-pixel imaging algorithms. J Opt Soc Am A Opt Image Sci Vis. 2017;35:78.
    [38] Song K, Bian Y, Wang D, Li R, Wu K, Liu H, et al. Advances and challenges of single-pixel imaging based on deep learning. Laser Photon Rev. 2025;19:2401397.
    [39] Ebner A, Gattinger P, Zorin I, Krainer L, Rankl C, Brandstetter M. Diffraction-limited hyperspectral mid-infrared single-pixel microscopy. Sci Rep. 2023;13:281.
    [40] Zeng B, Huang Z, Singh A, Yao Y, Azad AK, Mohite AD, et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci Appl. 2018;7:51.
    [41] Lan G, Tang L, Dong J, Nong J, Luo P, Li X, et al. Enhanced asymmetric light-plasmon coupling in graphene nanoribbons for high-efficiency transmissive infrared modulation. Laser Photon Rev. 2024;18:2300469.
    [42] Stantchev RI, Yu X, Blu T, Pickwell-MacPherson E. Real-time terahertz imaging with a single-pixel detector. Nat Commun. 2020;11:2535.
    [43] Wang Y, Huang K, Fang J, Yan M, Wu E, Zeng H. Mid-infrared single-pixel imaging at the single-photon level. Nat Commun. 2023;14:1073.
    [44] Ziemkiewicz D, Knez D, Garcia EP, Zielińska-Raczyńska S, Czajkowski G, Salandrino A, et al. Two-photon absorption in silicon using the real density matrix approach. J Chem Phys. 2024;161(14):144117.
    [45] Yu T, Fang J, Huang K, Zeng H. Widely tunable mid-infrared fiber-feedback optical parametric oscillator. Photon Res. 2024;12:2123.
    [46] Yu W-K. Super sub-Nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort. Sensors. 2019;19:4122.
    [47] Li C, Yin W, Jiang H, Zhang Y. An efficient augmented Lagrangian method with applications to total variation minimization. Comput Optim Appl. 2013;56:507–30.
    [48] Zhang K, Li Y, Zuo W, Zhang L, Van Gool L, Timofte R. Plug-and-play image restoration with deep denoiser prior. IEEE Trans Pattern Anal Mach Intell. 2021;44:6360–76.
    [49] Sun MJ, Edgar MP, Gibson GM, Sun B, Radwell N, Lamb R, et al. Single-pixel three-dimensional imaging with time-based depth resolution. Nat Commun. 2016;7:12010.
    [50] Feng Z, Tang T, Wu T, Yu X, Zhang Y, Wang M, et al. Perfecting and extending the near-infrared imaging window. Light Sci Appl. 2021;10:197.
    [51] Liu C, Guo J, Yu L, Li J, Zhang M, Li H, et al. Silicon/2D-material photodetors: from near-infrared to mid-infrared. Light Sci Appl. 2021;10:123.
计量
  • 文章访问数:  17
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-05
  • 录用日期:  2025-09-02
  • 修回日期:  2025-07-23
  • 网络出版日期:  2025-09-29

目录

    /

    返回文章
    返回