留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fiber laser based stimulated Raman photothermal microscopy towards a high-performance and user-friendly chemical imaging platform

Xiaowei Ge, Yifan Zhu, Dingcheng Sun, Hongli Ni, Yueming Li, Chinmayee V. Prabhu Dessai, Ji-Xin Cheng. Fiber laser based stimulated Raman photothermal microscopy towards a high-performance and user-friendly chemical imaging platform[J]. PhotoniX. doi: 10.1186/s43074-025-00196-1
Citation: Xiaowei Ge, Yifan Zhu, Dingcheng Sun, Hongli Ni, Yueming Li, Chinmayee V. Prabhu Dessai, Ji-Xin Cheng. Fiber laser based stimulated Raman photothermal microscopy towards a high-performance and user-friendly chemical imaging platform[J]. PhotoniX. doi: 10.1186/s43074-025-00196-1

doi: 10.1186/s43074-025-00196-1

Fiber laser based stimulated Raman photothermal microscopy towards a high-performance and user-friendly chemical imaging platform

Funds: This work is supported by NIH grants R35GM136223, R01EB032391, R01EB035429 to JXC.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Cheng J-X, Yuan Y, Ni H, Ao J, Xia Q, Bolarinho R, et al. Advanced vibrational microscopes for life science. Nat Methods. 2025;22:912.
    [2] Cheng J-X, Xie XS. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science. 2015. https://doi.org/10.1126/science.aaa8870.
    [3] Gao X, Li X, Min W. Absolute stimulated raman cross sections of molecules. J Phys Chem Lett. 2023. https://doi.org/10.1021/acs.jpclett.3c01064.
    [4] Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, et al. Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy. Science. 2008;322:1857.
    [5] Ji M, et al. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci Transl Med. 2015;7:309ra163.
    [6] Oh S, et al. Protein and lipid mass concentration measurement in tissues by stimulated raman scattering microscopy. Proc Natl Acad Sci USA. 2022;119:e2117938119.
    [7] Shen Y, Xu F, Wei L, Hu F, Min W. Live-cell quantitative imaging of proteome degradation by stimulated raman scattering. Angew Chem Int Ed. 2014;53:5596.
    [8] Yue S, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 2014;19:393.
    [9] Shi L, et al. Optical imaging of metabolic dynamics in animals. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-05401-3.
    [10] Zhao G, et al. Ovarian cancer cell fate regulation by the dynamics between saturated and unsaturated fatty acids. Proc Natl Acad Sci U S A. 2022;119:e2203480119.
    [11] Li Y, et al. Microglial lipid droplet accumulation in tauopathy brain is regulated by neuronal AMPK. Cell Metabolism. 2024;36:1351.
    [12] Hong W, Karanja CW, Abutaleb NS, Younis W, Zhang X, Seleem MN, et al. Antibiotic susceptibility determination within one cell cycle at single-bacterium level by stimulated raman metabolic imaging. Anal Chem. 2018;90:3737.
    [13] Zhang M, Hong W, Abutaleb NS, Li J, Dong P-T, Zong C, et al. Rapid determination of antimicrobial susceptibility by stimulated raman scattering imaging of D2O metabolic incorporation in a single bacterium. Adv Sci. 2020;7:2001452.
    [14] Ge X, Pereira FC, Mitteregger M, Berry D, Zhang M, Hausmann B, et al. SRS-FISH: a high-throughput platform linking microbiome metabolism to identity at the single-cell level. Proc Natl Acad Sci U S A. 2022;119:e2203519119.
    [15] Pereira FC, et al. The Parkinson’s drug entacapone disrupts gut microbiome homeostasis via iron sequestration, bioRxiv. 2023;11;12–566429.
    [16] Wei L, Chen Z, Shi L, Long R, Anzalone AV, Zhang L, et al. Super-multiplex vibrational imaging. Nature. 2017;544:465.
    [17] Shi L, Wei M, Miao Y, Qian N, Shi L, Singer RA, Benninger RKP, Min W. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. Nat Biotechnol. 2022;40:364.
    [18] Prince RC, Frontiera RR, Potma EO. Stimulated raman scattering: from bulk to nano. Chem Rev. 2017;117:5070.
    [19] Xu C, Wise FW. Recent advances in fibre lasers for nonlinear microscopy. Nat Photon. 2013;7:875.
    [20] Freudiger CW, Yang W, Holtom GR, Peyghambarian N, Xie XS, Kieu KQ. Stimulated raman scattering microscopy with a robust fibre laser source. Nat Photon. 2014. https://doi.org/10.1038/nphoton.2013.360.
    [21] Nose K, Ozeki Y, Kishi T, Sumimura K, Nishizawa N, Fukui K, et al. Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique. Opt Express. 2012;20:13958.
    [22] Ni H, Lin P, Zhu Y, Zhang M, Tan Y, Zhan Y, et al. Multiwindow SRS imaging using a rapid widely tunable fiber laser. Anal Chem. 2021;93:15703.
    [23] de Andrade RB, Kerdoncuff H, Berg-Sørensen K, Gehring T, Lassen M, Andersen UL. Quantum-enhanced continuous-wave stimulated Raman scattering spectroscopy. Optica, OPTICA. 2020;7:470.
    [24] Casacio CA, Madsen LS, Terrasson A, Waleed M, Barnscheidt K, Hage B, et al. Quantum-enhanced nonlinear microscopy. Nature. 2021. https://doi.org/10.1038/s41586-021-03528-w.
    [25] Xu Z, Oguchi K, Taguchi Y, Takahashi S, Sano Y, Mizuguchi T, et al. Quantum-enhanced stimulated Raman scattering microscopy in a high-power regime. Opt Lett. 2022;47:5829.
    [26] Bertoncini A, Laptenok SP, Genchi L, Rajamanickam VP, Liberale C. 3D-printed high-NA catadioptric thin lens for suppression of XPM background in stimulated Raman scattering microscopy. J Biophotonics. 2021;14:e202000219.
    [27] Tsikritsis D, Legge EJ, Belsey NA. Practical considerations for quantitative and reproducible measurements with stimulated Raman scattering microscopy. Analyst. 2022;147:4642.
    [28] Zhang J, Lin H, Xu J, Zhang M, Ge X, Zhang C, Huang WE, Cheng JX. High-throughput single-cell sorting by stimulated Raman-activated cell ejection, bioRxiv. 2023;10:16–562526.
    [29] Suzuki Y, et al. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proc Natl Acad Sci U S A. 2019;116:15842.
    [30] Yu Y, Mutlu AS, Liu H, Wang MC. High-throughput screens using photo-highlighting discover BMP signaling in mitochondrial lipid oxidation. Nat Commun. 2017. https://doi.org/10.1038/s41467-017-00944-3.
    [31] Zhu Y, et al. Stimulated raman photothermal microscopy toward ultrasensitive chemical imaging. Sci Adv. 2023;9:eadi2181.
    [32] Gaiduk A, Yorulmaz M, Ruijgrok PV, Orrit M. Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science. 2010;330:353.
    [33] Gaiduk A, Ruijgrok PV, Yorulmaz M, Orrit M. Detection limits in photothermal microscopy. Chem Sci. 2010;1:343.
    [34] Wei M, Shi L, Shen Y, Zhao Z, Guzman A, Kaufman LJ, et al. Volumetric chemical imaging by clearing-enhanced stimulated raman scattering microscopy. Proc Natl Acad Sci U S A. 2019;116:6608.
    [35] Ueda HR, Ertürk A, Chung K, Gradinaru V, Chédotal A, Tomancak P, et al. Tissue clearing and its applications in neuroscience. Nat Rev Neurosci. 2020;21:61.
    [36] Brinkmann M, et al. Portable all-fiber dual-output widely tunable light source for coherent raman imaging. Biomed Opt Express. 2019;10:4437.
    [37] Adhikari S, Spaeth P, Kar A, Baaske MD, Khatua S, Orrit M. Photothermal microscopy: imaging the optical absorption of single nanoparticles and single molecules. ACS Nano. 2020;14:16414.
    [38] Thorn K. A quick guide to light microscopy in cell biology. MBoC. 2016;27:219.
    [39] Zhang Y, Gross H. Systematic design of microscope objectives. Part I: System review and analysis. Adv Opt Technol. 2019;8:313.
    [40] Lin H, et al. Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-23202-z.
    [41] Zhang C, Li J, Lan L, Cheng J-X. Quantification of lipid metabolism in living cells through the dynamics of lipid droplets measured by stimulated raman scattering imaging. Anal Chem. 2017;89:4502.
    [42] Chen T, Yavuz A, Wang MC. Dissecting lipid droplet biology with coherent Raman scattering microscopy. J Cell Sci. 2021;135:jcs252353.
    [43] Shou J, Ozeki Y. Dual-polarization hyperspectral stimulated raman scattering microscopy. Appl Phys Lett. 2018;113:033701.
    [44] Tuck M, et al. Multimodal imaging based on vibrational spectroscopies and mass spectrometry imaging applied to biological tissue: a multiscale and multiomics review. Anal Chem. 2021;93:445.
    [45] Vanna R, De la Cadena A, Talone B, Manzoni C, Marangoni M, Polli D, et al. Vibrational imaging for label-free cancer diagnosis and classification. Riv Nuovo Cim. 2022;45:107.
    [46] Shen Y, Hu F, Min W. Raman imaging of small biomolecules. Annu Rev Biophys. 2019;48:347.
    [47] Zhang W, et al. Multi-molecular hyperspectral PRM-SRS microscopy. Nat Commun. 2024;15:1599.
    [48] Durst ME, Mertz J. Multiphoton Photothermal Imaging in Scattering Samples, in Optics in the Life Sciences (OSA, Monterey, California, 2011), p. NMD6.
    [49] Wang L, Lin H, Zhu Y, Ge X, Li M, Liu J, et al. Overtone photothermal microscopy for high-resolution and high-sensitivity vibrational imaging. Nat Commun. 2024;15:5374.
    [50] Ni H, Yuan Y, Li M, Zhu Y, Ge X, Yin J, et al. Millimetre-deep micrometre-resolution vibrational imaging by shortwave infrared photothermal microscopy. Nat Photon. 2024;18:944.
    [51] Zhang D, Slipchenko MN, Leaird DE, Weiner AM, Cheng J-X. Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper. Opt Express. 2013;21:13864.
计量
  • 文章访问数:  15
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-04
  • 录用日期:  2025-09-06
  • 修回日期:  2025-08-26
  • 网络出版日期:  2025-09-29

目录

    /

    返回文章
    返回