留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Adaptive infrared thermal camouflage of multi-layer PCMs devices via laser-electric co-modulation driven by neural network

Kailin Zhao, Qin Guo, Lan Jiang, Yansong Zhang, Shuhui Jiao, Jie Hu, Qian Cheng, Xun Cao, Weina Han. Adaptive infrared thermal camouflage of multi-layer PCMs devices via laser-electric co-modulation driven by neural network[J]. PhotoniX. doi: 10.1186/s43074-025-00199-y
Citation: Kailin Zhao, Qin Guo, Lan Jiang, Yansong Zhang, Shuhui Jiao, Jie Hu, Qian Cheng, Xun Cao, Weina Han. Adaptive infrared thermal camouflage of multi-layer PCMs devices via laser-electric co-modulation driven by neural network[J]. PhotoniX. doi: 10.1186/s43074-025-00199-y

doi: 10.1186/s43074-025-00199-y

Adaptive infrared thermal camouflage of multi-layer PCMs devices via laser-electric co-modulation driven by neural network

Funds: National Natural Science Foundation of China (NSFC) (grant 52375401, 52350362, 52235009, and 22379012), National Key Research and Development Program of China (2024YFB4609100), Chongqing Natural Science Foundation of China (grants cstc2021jcyj-cxttX0003), State Key Laboratory of High-performance Precision Manufacturing (grant HPMKF202411).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Boyd RW. Radiometry and the Detection of Optical Radiation. 1st ed. Hoboken: Wiley; 1983.
    [2] Chalmers JM, Griffiths PR. Handbook of Vibrational Spectroscopy. 1st ed. Hoboken: Wiley; 2006.
    [3] Hong S, Shin S, Chen R. An adaptive and wearable thermal camouflage device. Adv Funct Mater. 2020;30:1909788.
    [4] King JL, Shahsafi A, Zhang Z, Wan C, Xiao Y, Huang C, et al. Wavelength-by-wavelength temperature-independent thermal radiation utilizing an insulator-metal transition. ACS Photonics. 2022;9(8):2742–7.
    [5] Qin B, Zhu HZ, Zhu RX, Zhao M, Qiu M, Li Q. Space-to-ground infrared camouflage with radiative heat dissipation. Light Sci Appl. 2025;14:137.
    [6] Dai C, Zhu HZ, Qin R, Qin B, Zhao M, Ghosh P, et al. Approaching the thermal emissivity limit with ultrathin MXene films. Optica. 2025;12:685–92.
    [7] Wang P, Sun Y, Zhang YF, Wang HQ, Zhang YR, Xiao CY, et al. Programmable wire metamaterials for visible and self-adaptive infrared camouflage. Adv Mater. 2025;37:2503587.
    [8] Kim Y, Kim C, Lee M. Parallel laser printing of a thermal emission pattern in a phase-change thin film cavity for infrared camouflage and security. Laser Photon Rev. 2022;16:2100545.
    [9] Zhang ZC, Wang QY, Li ZF, Zhou Z, Xie XY, Sun HC, et al. A skin-beyond multifrequency camouflage system with self-adaptive discoloration and radar-infrared stealth. Chem Eng J. 2024;494:152867.
    [10] Howell JR, Mengüc MP, Daun K, Siegel R. Thermal Radiation Heat Transfer. 7th ed. Boca Raton: CRC Press; 2020.
    [11] Zhang Q, Lv YW, Wang YF, Yu SX, Li CX, Ma RJ, et al. Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat Commun. 2022;13:4874.
    [12] Zhang YF, Fowler C, Liang JH, Azhar B, Shalaginov M, Deckoff-Jones S, et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat Nanotechnol. 2021;16:661–6.
    [13] Shalaginov M, An S, Zhang YF, Yang F, Su P, Liberman V, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat Commun. 2021;12:1225.
    [14] Abdollahramezani S, Hemmatyar O, Taghinejad M, Taghinejad H, Krasnok A, Eftekhar A, et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat Commun. 2022;13:1696.
    [15] Song YZ, Yuan JQ, Chen QM, Liu XY, Zhou Y, Cheng JL, et al. Three-dimensional varifocal meta-device for augmented reality display. PhotoniX. 2025;6:6.
    [16] Li Y, Chen SY, Liang HW, Ren XY, Luo LC, Ling YY, et al. Ultracompact multifunctional metalens visor for augmented reality displays. PhotoniX. 2022;3:29.
    [17] Yu J, Qin R, Ying Y, Qiu M, Li Q. Asymmetric directional control of thermal emission. Adv Mater. 2023;35:2302478.
    [18] Zhu HZ, Li Q, Tao CN, Hong Y, Xu ZQ, Shen WD, et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat Commun. 2021;12:1805.
    [19] Zhao M, Zhu HZ, Qin B, Zhu RX, Zhang JH, Ghosh P, et al. High-temperature stealth across multi-infrared and microwave bands with efficient radiative thermal management. Nano-Micro Lett. 2025;17:199.
    [20] Qin B, Zhu YN, Zhou YW, Qiu M, Li Q. Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light Sci Appl. 2023;12:246.
    [21] Malevich Y, Ergoktas MS, Bakan G, Steiner P, Kocabas C. Very-large-scale reconfigurable intelligent surfaces for dynamic control of terahertz and millimeter waves. Nat Commun. 2025;16:2907.
    [22] Jiang XP, Nong J, Li X, Liao XY, Zeng JX, Luo SS, et al. Laser-adaptive inverse-design metamaterials for durable regulation from visible-infrared-LiDAR compatible camouflage to optical limiter. Laser Photonics Rev. 2025:e00881. https://doi.org/10.1002/lpor.202500881.
    [23] Li XQ, Sun B, Sui CX, Nandi A, Fang HM, Peng YC, et al. Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings. Nat Commun. 2020;11:6101.
    [24] Jia Y, Liu DQ, Chen DS, Jin YZ, Ge YF, Zhang WX, et al. Realizing sunlight-induced efficiently dynamic infrared emissivity modulation based on aluminum-doped zinc oxide nanocrystals. Adv Sci. 2024;11:2405962.
    [25] Heßler A, Wahl S, Kristensen P, Wuttig M, Busch K, Taubner T. Nanostructured In3SbTe2 antennas enable switching from sharp dielectric to broad plasmonic resonances. Nanophotonics. 2022;11:3871–82.
    [26] Heßler A, Conrads L, Wirth K, Wuttig M, Taubner T. Reconfiguring magnetic infrared resonances with the plasmonic phase-change material In3SbTe2. ACS Photonics. 2022;9:1821–8.
    [27] Yang JL, Li QY, Liu SQ, Fang DB, Zhang JY, Jin HB, et al. Temperature-adaptive metasurface radiative cooling device with excellent emittance and low solar absorptance for dynamic thermal regulation. Adv Photon. 2024;6:046006.
    [28] Lyu X, Heßler A, Wang X, Cao YZ, Song LX, Ludwig A, et al. Combining switchable phase-change materials and phase-transition materials for thermally regulated smart mid-infrared modulators. Adv Opt Mater. 2021;9:2100417.
    [29] Tang K, Wang X, Dong K, Li Y, Li J, Sun B, et al. A thermal radiation modulation platform by emissivity engineering with graded metal-insulator transition. Adv Mater. 2020;32:1907071.
    [30] Leitis A, Heßler A, Wahl S, Wuttig M, Taubner T, Tittl A, et al. All-dielectric programmable Huygens’ metasurfaces. Adv Funct Mater. 2020;30:1910259.
    [31] Ríos C, Du QY, Zhang YF, Popescu CC, Shalaginov MY, Miller P, et al. Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials. PhotoniX. 2022;3:26.
    [32] Giteau M, Conrads L, Mathwieser A, Schmitt R, Wuttig M, Taubner T, et al. Switchable narrowband diffuse thermal emission with an In3SbTe2-based planar structure. Laser Photon Rev. 2025;19:2401438.
    [33] Zhou SH, Dong SK, Song JM, Guo YM, Shuai Y, Hu GW. Tri-spectral decoupled programmable thermal emitter for multimode camouflage with heterogeneous phase-change integration. Nanoscale. 2025;17:13708–19.
    [34] Conrads L, Honné N, Ulm A, Heßler A, Schmitt R, Wuttig M. Reconfigurable and polarization-dependent grating absorber for large-area emissivity control based on the plasmonic phase-change material In3SbTe2. Adv Opt Mater. 2023;11:2202696.
    [35] Xiong YF, Wang YZ, Feng C, Tian YL, Gao L, Wang JL, et al. Electrically tunable phase-change metasurface for dynamic infrared thermal camouflage. Photonics Res. 2024;12:292–300.
    [36] Qian C, Jia YT, Wang ZD, Chen JT, Lin PJ, Zhu XY, et al. Autonomous aeroamphibious invisibility cloak with stochastic-evolution learning. Adv Photon. 2024;6:016001.
    [37] Yu SL, Zhou P, Xi W, Chen ZH, Deng YH, Luo XB, et al. General deep learning framework for emissivity engineering. Light Sci Appl. 2023;12:1–13.
    [38] Mendialdua J, Casanova R, Barbaux Y. XPS studies of V2O5, V6O13, VO2 and V2O3. J Electron Spectrosc Relat Phenom. 1995;71:249–61.
    [39] Silversmit G, Depla D, Poelman H, Marin GB, De Gryse R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J Electron Spectrosc Relat Phenom. 2004;135:167–75.
    [40] Ko JH, Kim DH, Hong SH, Kim SK, Song YM. Polarization-driven thermal emission regulator based on self-aligned GST nanocolumns. iScience. 2023;26:105780.
    [41] Kang D, Kim Y, Lee M. Laser dynamic control of the thermal emissivity of a planar cavity structure based on a phase-change material. ACS Appl Mater Interfaces. 2024;16:4925–33.
    [42] Xu GQ, Kang QL, Zhang XZ, Wang W, Guo K, Guo ZY. Inverse-design laser-infrared-compatible stealth with thermal management enabled by wavelength-selective thermal emitter. Appl Therm Eng. 2024;255:124063.
    [43] Xu ZQ, Luo H, Zhu HZ, Hong Y, Shen WD, Ding JP, et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting. Nano Lett. 2021;21(12):5269–76.
    [44] Kim HJ, Choi YH, Lee DK, Lee IH, Choi BK, Phark SH, et al. Enhanced passive thermal stealth properties of VO2 thin films via gradient W doping. Appl Surf Sci. 2021;561:150056.
    [45] Ramirez-Cuevas FV, Gurunatha KL, Li LX, Zulfiqar U, Sathasivam S, Tiwari MK, et al. Infrared thermochromic antenna composite for self-adaptive thermoregulation. Nat Commun. 2024;15:9109.
    [46] Bai T, Luo JQ, Zhao J. Inconspicuous adversarial patches for fooling image-recognition systems on mobile devices. IEEE Internet Things J. 2022;9:9515–24.
    [47] Wei XX, Yu J, Huang Y. Infrared adversarial patches with learnable shapes and locations in the physical world. Int J Comput Vis. 2024;132:1928–44.
计量
  • 文章访问数:  12
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-24
  • 录用日期:  2025-09-20
  • 修回日期:  2025-08-21
  • 网络出版日期:  2025-10-16

目录

    /

    返回文章
    返回