留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Highly sensitive self-calibrating birefringence measurement based on anisotropic laser feedback polarization effect

Shiwei Deng, Xunda Chang, Jiayu Wang, Yifan Wang, Xin Xu, Kewu Li, Yidong Tan, Guangwei Hu. Highly sensitive self-calibrating birefringence measurement based on anisotropic laser feedback polarization effect[J]. PhotoniX. doi: 10.1186/s43074-025-00208-0
Citation: Shiwei Deng, Xunda Chang, Jiayu Wang, Yifan Wang, Xin Xu, Kewu Li, Yidong Tan, Guangwei Hu. Highly sensitive self-calibrating birefringence measurement based on anisotropic laser feedback polarization effect[J]. PhotoniX. doi: 10.1186/s43074-025-00208-0

doi: 10.1186/s43074-025-00208-0

Highly sensitive self-calibrating birefringence measurement based on anisotropic laser feedback polarization effect

Funds: National Natural Science Foundation of China (62405292); Fundamental Research Program of Shanxi Province (202403021222184); Postdoctoral Fellowship Program of CPSF (GZC20240802).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Wang Y, Xia M, Zhou J, Huang D, Chen Y, Zhang X. Resonantly enhanced optical birefringence in ultrathin high-index WS2 metasurfaces. Laser Photon Rev. 2024;18:2301088.
    [2] Zhou Y, Guo Z, Gu H, Li Y, Song Y, Liu S, et al. A solution-processable natural crystal with giant optical anisotropy for efficient manipulation of light polarization. Nat Photon. 2024;18:922.
    [3] Zhang F, Chen X, Zhang M, Jin W, Han S, Yang Z, et al. An excellent deep-ultraviolet birefringent material based on [BO2]∞ infinite chains. Light Sci Appl. 2022;11:252.
    [4] Kebci Z, Hamidi M, Zeghdoudi T, Belkhir A, Lamrous O, Baida FI. Design of a metallic half-wave plate based on birefringent metamaterial for applications in the visible range. Phys Scr. 2025;100:035552.
    [5] Li Z, Liu W, Zhang Y, Cheng H, Zhang S, Chen S. Optical polarization manipulations with anisotropic nanostructures. PhotoniX. 2024;5:30.
    [6] Crotti G, Akturk M, Schirato A, Vinel V, Trifonov AA, Buchvarov IC, et al. Giant ultrafast dichroism and birefringence with active nonlocal metasurfaces. Light Sci Appl. 2024;13:204.
    [7] Shimura T, Kinoshita T, Koto Y, Umeda N, Iwami K. Birefringent reconfigurable metasurface at visible wavelengths by MEMS nanograting. Appl Phys Lett. 2018;113:171905.
    [8] Hsu S-Y, Lee K-L, Lin E-H, Lee M-C, Wei P-K. Giant birefringence induced by plasmonic nanoslit arrays. Appl Phys Lett. 2009;95:013105.
    [9] Wu W, Battie Y, Lemaire V, Decher G, Pauly M. Structure-dependent chiroptical properties of twisted multilayered silver nanowire assemblies. Nano Lett. 2021;21:8298–303.
    [10] Kilic U, Hilfiker M, Wimer S, Ruder A, Schubert E, Schubert M, et al. Controlling the broadband enhanced light chirality with L-shaped dielectric metamaterials. Nat Commun. 2024;15:3757.
    [11] Kilic U, Traouli Y, Hilfiker M, Bryant K, Schoeche S, Feder R, et al. Nanocolumnar metamaterial platforms: scaling rules for structural parameters revealed from optical anisotropy. Adv Opt Mater. 2024;12:2302767.
    [12] Mireles M, Hoffman BN, MacNally S, Smith CC, Lakshmanan SN, Lambropoulos JC, et al. Direct-write laser-assisted patterning of form birefringence in wave plates fabricated by glancing-angle deposition. Optica. 2023;10:657–62.
    [13] Schulz M, Zablocki J, Abdullaeva OS, Brück S, Balzer F, Lützen A, et al. Giant intrinsic circular dichroism of prolinol-derived squaraine thin films. Nat Commun. 2018;9:2413.
    [14] Sit A, Di Colandrea F, D’Errico A, Karimi E. Spatially twisted liquid-crystal devices. APL Photon. 2024;9:056112.
    [15] Abu Aisheh M, Abutoama M, Abuleil MJ, Abdulhalim I. Fast tunable metamaterial liquid crystal achromatic waveplate. Nanophotonics. 2023;12:1115–27.
    [16] Huang X, Yang H, Wei Y, Ju H, Wang W, Tu D, Li G. Dynamic and Static Stress Sensing Based on Mechanical Quenching Phenomenon From CaZnOS: Cu+ Laser & Photonics Reviews. 2025;19:2402010.
    [17] Tabatabaeian A, Ghasemi AR, Shokrieh MM, Marzbanrad B, Baraheni M, Fotouhi M. Residual stress in engineering materials: a review. Adv Eng Mater. 2022;24:2100786.
    [18] Kang C, Park C, Lee M, Kang J, Jang MS, Chung H. Large-scale photonic inverse design: computational challenges and breakthroughs. Nanophotonics. 2024;13:3765–92.
    [19] Leica, Polarizing microscope, www.leica-microsystems.com.cn/cn/science-lab/industrial/the-polarization-microscopy-principle/, accessed: April, 2025.
    [20] Tian Y, Zhang J, Peng G-D, Chu Y, Luo Y, Khan MTA, et al. Birefringence measurement by expandable polarization interference method. J Lightwave Technol. 2020;38:834.
    [21] Li K, Zhang R, Jing N, Chen Y, Zhang M, Wang L, et al. Fast and full range measurements of ellipsometric parameters using a 45° dual-drive symmetric photoelastic modulator. Opt Express. 2017;25:5725.
    [22] Chen Q, Liu B, He Y, Luo H, Lv W. Phase retardation measurement of an arbitrary wave plate based on magneto-optical modulating and residue detecting of the base frequency component of the signal. Opt Lett. 2018;43:4514.
    [23] Lee SY, Lin JF, Lo YL. Measurements of phase retardation and principal axis angle using an electro-optic modulated Mach-Zehnder interferometer. Opt Lasers Eng. 2005;43:704.
    [24] Wei S, Pang YJ, Bai ZX, Wang YL, Lv ZW. Laser heterodyne based stress measurement technology for optical elements. Infrared Phys Technol. 2021;119:103969.
    [25] Fujiwara H. Spectroscopic ellipsometry: principles and applications. England: Wiley; 2007. p. 70–78.
    [26] Hu J, Li RF, Hu ZJ, Li HS, Yang YZ, Li HT, et al. Implementation of Er-doped random fiber laser self-mixing sensor with ultra-limit sensitivity. APL Photonics. 2024;9:3.
    [27] Li J, Zhao YK, Liu J, Liu JC, Li HT, Yu Q, et al. Toward exploring noncontinuous-state dynamics based on pulse-modulated frequency-shifted laser feedback interferometry. Photonics Res. 2025;13:671.
    [28] Taimre T, Nikolic M, Bertling K, Lim YL, Bosch T, Rakic AD. Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing. Adv Opt Photon. 2015;7:570.
    [29] Li RF, Hu ZJ, Li HT, Zhao YK, Liu KY, Tu YR, et al. All-fiber laser-self-mixing interferometer with adjustable injection intensity for remote sensing of 40 km. J Lightwave Technol. 2022;40:4863.
    [30] Xu X, Dai ZR, Wang YF, Li MF, Tan YD. High sensitivity and full-circle optical rotary sensor for non-cooperatively tracing wrist tremor with nanoradian resolution. IEEE Trans Ind Electron. 2022;69:9605.
    [31] Zhu KY, Guo B, Lu YY, Zhang SL, Tan YD. Single-spot two-dimensional displacement measurement based on self-mixing interferometry. Optica. 2017;4:729.
    [32] Lin F, Tan YF, Ali M, Su Z, Liao WH, Wong HY. Investigating the influence of target distance in laser offline measurement based on self-mixing interference and its potential for monitoring additive manufacturing processes. J Manuf Process. 2025;137:32.
    [33] Bittner S, Sciamanna M. Complex nonlinear dynamics of polarization and transverse modes in a broad-area VCSEL. APL Photonics. 2022;7:12.
    [34] Pusch T, La Tona E, Lindemann M, Gerhardt NC, Hofmann MR, Michalzik R. Monolithic vertical-cavity surface-emitting laser with thermally tunable birefringence. Appl Phys Lett. 2017;110:15.
    [35] Deng S, Zhang Z, Shen H, Shi Y, Liu W. Frequency-shifted dynamics of Nd: YVO4 laser with anisotropic and quite weak optical feedback. Results Phys. 2022;43:106104.
    [36] Schubert M. Generalized ellipsometry and complex optical systems. Thin Solid Films. 1998;313:323–32.
    [37] Qian K, Yang H, Li J, Liang D, Li J, Zhong Y, et al. Extreme anti-interference capability in temporal and frequency domain by utilizing laser antenna in optical wireless communication system. PhotoniX. 2025;6:22.
    [38] Deng S, Shen H. Influence of acousto-optic frequency shifter’s thermal-induced birefringence on laser frequency-shifted feedback system. Opt Lasers Eng. 2023;160:107290.
    [39] Dong X, Guo F, Chen L, Mu W, Liu L, Wang S, et al. Crystal structural editing: novel biaxial MgTe2O5 crystal as zero-order waveplates. Adv Mater. 2025;37:2419643.
    [40] Kragt AJJ, van Gessel IPM, Schenning APHJ, Broer DJ. Temperature-Responsive Polymer Wave Plates as Tunable Polarization Converters Advanced. Opt Mater. 2019;7:1901103.
    [41] Peltier J, Zhang WW, Virot L, Lafforgue C, Deniel L, Marris-morini D, et al. High-speed silicon photonic electro-optic Kerr modulation. Photonics Res. 2024;12:51.
    [42] Li J, Niu Y, Niu H. Measurement of phase retardation of optical multilayer films based on laser feedback system. Opt Express. 2016;24:409.
    [43] Thorlabs, liquid crystal variable retarders, www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6339, accessed: April, 2025.
    [44] Ji J, Chen C, Sun J, Ye X, Wang Z, Li J, et al. High-dimensional Poincaré beams generated through cascaded metasurfaces for high-security optical encryption. PhotoniX. 2024;5:13.
    [45] Hu G, Ma W, Hu D, Wu J, Zheng C, Liu K, et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat Nanotechnol. 2023;18:64.
    [46] Hu G, Ou Q, Si G, Wu Y, Wu J, Dai Z, et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature. 2020;582:209.
计量
  • 文章访问数:  24
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-26
  • 录用日期:  2025-11-05
  • 修回日期:  2025-10-17
  • 网络出版日期:  2025-11-14

目录

    /

    返回文章
    返回