留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photon avalanche nanomaterials: from spark to surge

Chang Liu, Yuzheng Wang, Yixun Fan, Liangliang Liang. Photon avalanche nanomaterials: from spark to surge[J]. PhotoniX. doi: 10.1186/s43074-025-00209-z
Citation: Chang Liu, Yuzheng Wang, Yixun Fan, Liangliang Liang. Photon avalanche nanomaterials: from spark to surge[J]. PhotoniX. doi: 10.1186/s43074-025-00209-z

doi: 10.1186/s43074-025-00209-z

Photon avalanche nanomaterials: from spark to surge

Funds: We would like to acknowledge the kind invitation and support from the PhotoniX editorial office.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Szalkowski M, et al. Advances in the photon avalanche luminescence of inorganic lanthanide-doped nanomaterials. Chem Soc Rev. 2025;54:983–1026.
    [2] Skripka A, Chan EM. Unraveling the myths and mysteries of photon avalanching nanoparticles. Mater Horiz. 2025;12:3575–97.
    [3] Joubert MF, Guy S, Jacquier B. Model of the photon-avalanche effect. Phys Rev B. 1993;48:10031–7.
    [4] Guy S, Joubert MF, Jacquier B. Photon avalanche and the mean-field approximation. Phys Rev B. 1997;55:8240–8.
    [5] Chivian JS, Case WE, Eden DD. The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters. Appl Phys Lett. 1979;35:124–5.
    [6] Lee C, et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature. 2021;589:230–5.
    [7] Chen J, et al. Optical nonlinearities in excess of 500 through sublattice reconstruction. Nature. 2025;643:669–74.
    [8] Zhang Z, et al. Tuning phonon energies in lanthanide-doped potassium lead halide nanocrystals for enhanced nonlinearity and upconversion. Angew Chem Int Ed Engl. 2023;62:e202212549.
    [9] Bednarkiewicz A, Chan EM, Kotulska A, Marciniak L, Prorok K. Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging. Nanoscale Horiz. 2019;4:881–9.
    [10] Liang Y, et al. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity. Nat Nanotechnol. 2022;17:524–30.
    [11] Lee C, et al. Indefinite and bidirectional near-infrared nanocrystal photoswitching. Nature. 2023;618:951–8.
    [12] Fardian-Melamed N, et al. Infrared nanosensors of piconewton to micronewton forces. Nature. 2025;637:70–5.
    [13] Casar JR, et al. Upconverting microgauges reveal intraluminal force dynamics in vivo. Nature. 2025;637:76–83.
    [14] Szalkowski M, et al. Predicting the impact of temperature dependent multi-phonon relaxation processes on the photon avalanche behavior in Tm3+: NaYF4 nanoparticles. Optical Materials: X. 2021;12:100102.
    [15] Bednarkiewicz A, Chan EM, Prorok K. Enhancing FRET biosensing beyond 10 nm with photon avalanche nanoparticles. Nanoscale Adv. 2020;2:4863–72.
    [16] Bednarkiewicz A, et al. All-optical data processing with photon-avalanching nanocrystalline photonic synapse. Adv Mater. 2023;35:2304390.
    [17] Skripka A, et al. Intrinsic optical bistability of photon avalanching nanocrystals. Nat Photon. 2025;19:212–8.
    [18] Skripka A, et al. A generalized approach to photon avalanche upconversion in luminescent nanocrystals. Nano Lett. 2023;23:7100–6.
    [19] Dong H, et al. Parallel photon avalanche nanoparticles for tunable emission and multicolour sub-diffraction microscopy. Nat Photon. 2025;19:692–700.
计量
  • 文章访问数:  16
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-04
  • 录用日期:  2025-11-06
  • 修回日期:  2025-10-24
  • 网络出版日期:  2025-11-10

目录

    /

    返回文章
    返回