留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechano-electro-optical conversion dynamics in mechanoluminescence and its application in remote human–robot interaction

Haoliang Cheng, Shuangqiang Fang, Yi Li, Qiangqiang Zhu, Yixi Zhuang, Rongjun Xie, Wei Yan, Ding Zhao, Min Qiu, Le Wang. Mechano-electro-optical conversion dynamics in mechanoluminescence and its application in remote human–robot interaction[J]. PhotoniX. doi: 10.1186/s43074-025-00210-6
Citation: Haoliang Cheng, Shuangqiang Fang, Yi Li, Qiangqiang Zhu, Yixi Zhuang, Rongjun Xie, Wei Yan, Ding Zhao, Min Qiu, Le Wang. Mechano-electro-optical conversion dynamics in mechanoluminescence and its application in remote human–robot interaction[J]. PhotoniX. doi: 10.1186/s43074-025-00210-6

doi: 10.1186/s43074-025-00210-6

Mechano-electro-optical conversion dynamics in mechanoluminescence and its application in remote human–robot interaction

Funds: This work was financially supported by National Natural Science Foundation of China (U24A20307; 12304460).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Guo LC, Xia P, Wang T, Yakovlev AN, Hu TT, Zhao F, et al. Visual representation of the stress distribution with a color-manipulated mechanoluminescence of fluoride for structural mechanics. Adv Funct Mater. 2023;33:2306875.
    [2] Yang Y, Zheng SH, Fu XY, Zhang HW. Remote and portable mechanoluminescence sensing system based on a SrAl2O4: Eu, Dy film and its potential application to monitoring the safety of gas pipelines. Optik. 2018;158:602.
    [3] Kim JS, Kwon YN, Sohn KS. Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4:(Eu, Dy, Nd). Acta Mater. 2003;51:6437.
    [4] Liu H, Zheng Y, Liu S, Zhao J, Song Z, Peng D, et al. Realizing red mechanoluminescence of ZnS: Mn2+ through ferromagnetic coupling. Adv Funct Mater. 2024;34:2314422.
    [5] Shin HG, Timilsina S, Sohn KS, Kim JS. Digital image correlation compatible mechanoluminescent skin for structural health monitoring. Adv Sci. 2022;9:2105889.
    [6] Li YX, Shi LJ, Cheng Y, Wang RR, Sun J. Development of conductive materials and conductive networks for flexible force sensors. Chem Eng J. 2023;455:140763.
    [7] Jeong SM, Song Sk, Joo K-I, Kim J, Hwang S, Jeong J, et al. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer. Energy Environ Sci. 2014;7:3338.
    [8] Wang XD, Que ML, Chen MX, Han X, Li XY, Pan CF, et al. Full dynamic-range pressure sensor matrix based on optical and electrical dual-mode sensing. Adv Mater. 2017;29:1605817.
    [9] Wang CF, Ma RH, Peng DF, Liu XH, Li J, Jin BR, et al. Mechanoluminescent hybrids from a natural resource for energy-related applications. InfoMat. 2021;3:1272.
    [10] Qian X, Cai ZR, Su M, Li FY, Fang W, Li YD, et al. Printable skin-driven mechanoluminescence devices via nanodoped matrix modification. Adv Mater. 2018;30:1800291.
    [11] Zhuang YX, Li XY, Lin FY, Chen CJ, Wu ZS, Luo HD, et al. Visualizing dynamic mechanical actions with high sensitivity and high resolution by near-distance mechanoluminescence imaging. Adv Mater. 2022;34:2202864.
    [12] Lee G, Song S, Jeong WH, Lee C, Kim JS, Lee JH, et al. Interfacial triboelectricity lights up phosphor-polymer elastic composites: unraveling the mechanism of mechanoluminescence in zinc sulfide microparticle-embedded polydimethylsiloxane films. Small. 2024;20:2307089.
    [13] Peng DF, Jiang Y, Huang BL, Du YY, Zhao JX, Zhang X, et al. A ZnS/CaZnOS heterojunction for efficient mechanical-to-optical energy conversion by conduction band offset. Adv Mater. 2020;32:1907747.
    [14] Jia JN, Fu L, Gao XW, Dong ST, Xu YQ, Wang DY, et al. Ternary-host and heterojunction enabled eye-visible elastic mechanoluminescence from (Ca0.5Sr0.5) ZnOS/xZnS/Mn2+. J Phys Chem C. 2022;126:1523.
    [15] Pan X, Zhuang YX, He W, Lin CJ, Mei LF, Chen CJ, et al. Quantifying the interfacial triboelectricity in inorganic-organic composite mechanoluminescent materials. Nat Commun. 2024;15:2673.
    [16] Chang SL, Zhang KY, Peng DN, Deng Y, Shan CX, Dong L. Mechanoluminescent functional devices: developments, applications and prospects. Nano Energy. 2024;122:109325.
    [17] Wang FL, Wang FL, Wang XD, Wang SC, Jiang JF, Liu QL, et al. Mechanoluminescence enhancement of ZnS:Cu,Mn with piezotronic effect induced trap-depth reduction originated from PVDF ferroelectric film. Nano Energy. 2019;63:103861.
    [18] Hou B, Yi LY, Li C, Zhao H, Zhang R, Zhou B, et al. An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation. Nat Electron. 2022;5:682.
    [19] Yang H, Wei Y, Ju HN, Huang XR, Li J, Wang W, et al. Microstrain-stimulated elastico-mechanoluminescence with dual-mode stress sensing. Adv Mater. 2024;36:2401296.
    [20] Deng Y, Peng DN, Shen CL, Sun JL, Zheng GS, Chang SL, et al. Energy transfer-assisted color conversion of persistent mechanoluminescence in RhB@ SiO2/SrAl2O4: Eu, Dy system for multilevel information encryption. Laser Photon Rev. 2024;18:2400251.
    [21] Li W, Cai YY, Chang JQ, Wang SS, Liu JJ, Zhou L, et al. Unraveling mechanoluminescent mechanisms in doped CaZnOS materials: co-mediation of trap-controlled and non-trap-controlled processes. Adv Funct Mater. 2023;33:2305482.
    [22] Tang YQ, Cai YY, Dou KP, Chang JQ, Li W, Wang SS, et al. Dynamic multicolor emissions of multimodal phosphors by Mn2+ trace doping in self-activated CaGa4O7. Nat Commun. 2024;15:3209.
    [23] Cai YY, Liu SB, Zhao L, Wang C, Lv HY, Liu BT, et al. Delayed stress memory by CaAl2O4:Eu2+ mechanoluminescent phosphor with defect engineering regulation. J Adv Ceram. 2022;11:1319.
    [24] Jeong HI, Jung HS, Dubajic M, Kim G, Jeong WH, Song H, et al. Super elastic and negative triboelectric polymer matrix for high performance mechanoluminescent platforms. Nat Commun. 2025;16:854.
    [25] Huang Z, Chen B, Ren B, Tu D, Wang Z, Wang C, et al. Smart mechanoluminescent phosphors: a review of strontium-aluminate-based materials, properties, and their advanced application technologies. Adv Sci. 2023;10:2204925.
    [26] Yang M, Ge X, Zheng LY, Huang YS, Zhong JP, Tu D, et al. Mechanoluminescent light sources based on nanostructured systems for biomedical applications: a review. ACS Appl Nano Mater. 2024;7:26515.
    [27] Huang Z, Li X, Liang T, Ren B, Zhang X, Zheng Y, et al. Smart mechanoluminescent phosphors: a review of zinc sulfide-based materials for advanced mechano-optical applications. Responsive Materials. 2024;2:e20240019.
    [28] Feng A, Smet PF. A review of mechanoluminescence in inorganic solids: compounds, mechanisms, models and applications. Materials. 2018;11:484.
    [29] Li L, Wong K-L, Li PF, Peng MY. Mechanoluminescence properties of Mn2+-doped BaZnOS phosphor. J Mater Chem C. 2016;4:8166.
    [30] Bai YQ, Wang F, Zhang LQ, Wang DA, Liang YM, Yang SR, et al. Interfacial triboelectrification-modulated self-recoverable and thermally stable mechanoluminescence in mixed-anion compounds. Nano Energy. 2022;96:107075.
    [31] Zhou JY, Gu Y, Lu JY, Xu LD, Zhang JC, Wang D, et al. An ultra-strong non-pre-irradiation and self-recoverable mechanoluminescent elastomer. Chem Eng J. 2020;390:124473.
    [32] Runowski M, Moszczyński J, Woźny P, Soler-Carracedo K, Barzowska J, Mahlik S, et al. Sound, force and light induced emissions from Er3+-Mn2+ doped ZnS/CaZnOS heterostructure for remote temperature monitoring via photo-and mechanoluminescence. Adv Mater. 2025. https://doi.org/10.1002/adma.202510117.
    [33] Zhang P, Zhao XH, Jia ZW, Dong JB, Liang TL, Liu Y, et al. High defect tolerance breaking the design limitation of full-spectrum multimodal luminescence materials. Adv Mater. 2024;37:2411532.
    [34] Wang TL, Zhang PF, Xiao JQ, Guo ZY, Xie XW, Huang JH, et al. Trap assisted dynamic mechanoluminescence toward self-referencing and visualized strain sensing. Adv Sci. 2024;12(3):2410673.
    [35] Zhang JC, Wang XS, Marriott G, Xu CN. Trap-controlled mechanoluminescent materials. Prog Mater Sci. 2019;103:678.
    [36] He QS, Yan YJ, Wang T, Guo LC, Yue Y, Zhu NN, et al. Color-resolved mechanoluminescence of Eu and Mn co-doped SrMg2(PO4)2. CrystEngComm. 2024;26:2096.
    [37] Qiu XY, Liu JZ, Zhou B, Zhang XX. Bioinspired bimodal mechanosensors with real-time, visualized information display for intelligent control. Adv Funct Mater. 2023;33:2300321.
    [38] Li WH, Wang SK, Jin MY, Wang L, Nan JL, Wang C, et al. Near‐infrared dual‐modal sensing of force and temperature in total knee replacement using mechanoluminescent phosphor of Sr3Sn2O7: Nd, Yb. Small. 2024;20:2310180.
    [39] Wu LM, Yuan XX, Tang YX, Wageh S, Al-Hartomy OAA, Al-Sehemi AGG, et al. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices. Photonix. 2023;4:15.
    [40] Shao LY, Zhang JM, Chen XW, Xu DY, Gu HX, Mu Q, et al. Artificial intelligence-driven distributed acoustic sensing technology and engineering application. Photonix. 2025;6:4.
    [41] Ou JQ, Fang SQ, Cheng HL, Han DJ, Zhu QQ, Zhai Y, et al. Awakening dumb Mn2+ mechanoluminescence site to achieve force, temperature and time-domain induced color tuning via trap-assisted energy transfer. Chem Eng J. 2024;493:152500.
    [42] Qin SY, Wei WY, Tian BR, Ma ZD, Fang SF, Wang YS, et al. Self-recoverable, highly repeatable, and thermally stable mechanoluminescence for dual-mode information storage and photonic skin applications. Adv Funct Mater. 2024;34:2401535.
    [43] Li LY, Sheng SF, Liu YF, Wen JP, Song CY, Chen ZP, et al. Automatic and continuous blood pressure monitoring via an optical-fiber-sensor-assisted smartwatch. Photonix. 2023;4:21.
    [44] Rastogi CK, Mishra R, Chirauri S, Rao KR, Vatsa R, Kadam R, et al. Comparative study on photo and electroluminescence properties of Cu-doped ZnS. Phys B Condens Matter. 2022;640:414054.
    [45] Sohn K-S, Timilsina S, Singh SP, Choi T, Kim JS. Mechanically driven luminescence in a ZnS: Cu-PDMS composite. APL Mater. 2016;4:106102.
    [46] Wang H, Zhao TT, Li M, Li JL, Liu K, Peng S, et al. Oscillatory mechanoluminescence of Mn2+-doped SrZnOS in dynamic response to rapid compression. Nat Commun. 2025;16:548.
    [47] Haider SS, Baran M, Diduszko R, Pojnar K, Wolska A, Klepka MT, et al. Visible to near-infrared mechanoluminescence from Pr-doped LiTaO3 for stress-sensing applications. J Phys Chem C. 2023;128:489.
    [48] Chen CJ, Lin Z, Huang HH, Pan X, Zhou TL, Luo HD, et al. Revealing the intrinsic decay of mechanoluminescence for achieving ultrafast-response stress sensing. Adv Funct Mater. 2023;33:2304917.
    [49] Soon MJ, Song Sk, Lee SK, Choi B. Mechanically driven light-generator with high durability. Appl Phys Lett. 2013;102:361.
    [50] Tarek M, Ray T. Adaptive continuation solid isotropic material with penalization for volume constrained compliance minimization. Comput Methods Appl Mech Eng. 2020;363:112880.
    [51] Haider I, Gul IH, Aziz S, Faraz MI, Khan MA, Jaffery SHI, et al. Environmental aging of reinforced polymer composite radome: reliability and performance investigation. Front Mater. 2024;11:1427541.
    [52] García-Rodríguez S, García I, García-Rodríguez A, Díez-Mediavilla M, Alonso-Tristán C. Solar ultraviolet irradiance characterization under all sky conditions in Burgos, Spain. Appl Sci. 2022;12:10407.
计量
  • 文章访问数:  29
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-11
  • 录用日期:  2025-11-05
  • 修回日期:  2025-10-13
  • 网络出版日期:  2025-11-18

目录

    /

    返回文章
    返回