Turn off MathJax
Article Contents
Chenglin Gu, Zhong Zuo, Daping Luo, Zejiang Deng, Yang Liu, Minglie Hu, Wenxue Li. Passive coherent dual-comb spectroscopy based on optical-optical modulation with free running lasers[J]. PhotoniX. doi: 10.1186/s43074-020-0005-2
Citation: Chenglin Gu, Zhong Zuo, Daping Luo, Zejiang Deng, Yang Liu, Minglie Hu, Wenxue Li. Passive coherent dual-comb spectroscopy based on optical-optical modulation with free running lasers[J]. PhotoniX. doi: 10.1186/s43074-020-0005-2

Passive coherent dual-comb spectroscopy based on optical-optical modulation with free running lasers

doi: 10.1186/s43074-020-0005-2
Funds:

National Natural Science Foundation of China (11904105, 11874153, 11804096).

National Key R&D Program of China (2017YFF0206000, 2018YFA0306301)

  • Received Date: 2019-11-13
  • Accepted Date: 2019-12-19
  • Available Online: 2020-03-06
  • Dual-comb spectroscopy is a powerful spectroscopic tool with ultrahigh-resolution, high-sensitivity properties, which opens up opportunities for the parallel detection of multi-species molecules. However, in its conventional form, highly stable laser combs with sophisticated control systems are required to perform dual-comb spectroscopy. Here, a passive mutually coherent dual-comb spectroscopy system via an optical-optical modulation method is addressed, where all fast phase-locking electronics are retired. Without post computer-based phase-correction, a high degree of mutual coherence between the two combs with a relative comb-tooth linewidth of 10 mHz is achieved, corresponding to a coherent time of 100 s. To demonstrate the performance and versatility of the system, the dual comb spectrometer is applied to record the mode-resolved single molecular spectra as well as parallel detected spectra of mixed gases including CO2, CO and C2H2 that well agree with the established spectral parameters. Our technique exhibits flexible wavelength tuning capability in the near-infrared region and can be potentially extended to the mid-infrared region for more applications.
  • loading
  • [1]
    Udem T, Holzwarth R, Hänsch TW. Optical frequency metrology. Nature. 2002;416:233–7.
    [2]
    Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nat Photon. 2009;3:99–102.
    [3]
    Yokoyama S, Yokoyama T, Hagihara Y, Araki T, Yasui T. A distance meter using a terahertz intermode beat in an optical frequency comb. Opt. Express. 2009;17:17324–37.
    [4]
    Diddams SA, Hollberg L, Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature. 2007;445:627–30.
    [5]
    Boudreau S, Levasseur S, Perilla C, Roy S, Genest J. Chemical detection with hyperspectral lidar using dual frequency combs, opt. Express. 2013;21:7411–8.
    [6]
    Ideguchi T, Holzner S, Bernhardt B, Guelachvili G, Picqué N, Hänsch TW. Coherent Raman spectro-imaging with laser frequency combs. Nature. 2013;502:355–8.
    [7]
    Rieker GB, Giorgetta FR, Swann WC, Kofler J, Zolot AM, Sinclair LC, Tans PP. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica. 2014;1:290–8.
    [8]
    Thorpe MJ, Balslev-Clausen D, Kirchner MS, Ye J. Human breath analysis via cavity enhanced optical frequency comb spectroscopy. Opt. Express. 2008;16:2387–97.
    [9]
    Coddington I, Newbury N, Swann W. Dual-comb spectroscopy. Optica. 2016;3:414–26.
    [10]
    Ideguchi T. Dual-Comb Spectroscopy. Opt Photon News. 2017;28:32–9.
    [11]
    Schiller S. Spectrometry with frequency combs. Opt Lett. 2002;27:766–8.
    [12]
    Okubo S, Iwakuni K, Inaba H, Hosaka K, Onae A, Sasada H, Hong FL. Ultra-broadband dual-comb spectroscopy across 1.0–1.9 μm. Appl Phys Express. 2015;8:082402.
    [13]
    Zolot AM, Giorgetta FR, Baumann E, Nicholson JW, Swann WC, Coddington I, Newbury NR. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. Opt Lett. 2012;37:638–40.
    [14]
    Coddington I, Swann WC, Newbury NR. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys Rev Lett. 2008;100:013902.
    [15]
    Coddington I, Swann WC, Newbury NR. Coherent dual-comb spectroscopy at high signal-to-noise ratio. Phys Rev A. 2010;82:043817.
    [16]
    Chen Z, Yan M, Hänsch TW, Picqué N. A phase-stable dual-comb interferometer. Nat Commun. 2018;9:3035.
    [17]
    Ideguchi T, Poisson A, Guelachvili G, Picqué N, Hänsch TW. Adaptive real-time dual-comb spectroscopy. Nat Commun. 2014;5:3375.
    [18]
    Roy J, Deschênes JD, Potvin S, Genest J. Continuous real-time correction and averaging for frequency comb interferometry. Opt Express. 2012;20:21932–9.
    [19]
    Giaccari P, Deschênes JD, Saucier P, Genest J, Tremblay P. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method. Opt Express. 2008;16:4347–65.
    [20]
    Newbury NR, Swann WC. Low-noise fiber-laser frequency combs. J Opt Soc Am B. 2007;24:1756–70.
    [21]
    Washburn BR, Newbury NR. Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber. Opt Express. 2004;12:2166–75.
    [22]
    Zhao X, Hu G, Zhao B, Li C, Pan Y, Liu Y, Yasui T, Zheng Z. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser. Opt Express. 2016;24:21833–45.
    [23]
    Ideguchi T, Nakamura T, Kobayashi Y, Goda K. Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy. Optica. 2016;3:748–53.
    [24]
    Long DA, Fleisher AJ, Douglass KO, Maxwell SE, Bielska K, Hodges JT, Plusquellic DF. Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser. Opt Lett. 2014;39:2688–90.
    [25]
    Millot G, Pitois S, Yan M, Hovhannisyan T, Bendahmane A, Hänsch TW, Picqué N. Frequency-agile dual-comb spectroscopy. Nat Photon. 2016;10:27–30.
    [26]
    Morohashi I, Sakamoto T, Sotobayashi H, Kawanishi T, Hosako I, Tsuchiya M. Widely repetition-tunable 200 fs pulse source using a Mach–Zehnder-modulator-based flat comb generator and dispersion-flattened dispersion-decreasing fiber. Opt Lett. 2008;33:1192–4.
    [27]
    Manzoni C, Cirmi G, Brida D, Silvestri SD, Cerullo G. Optical-parametric-generation process driven by femtosecond pulses: timing and carrier-envelope phase properties. Phys Rev A. 2009;79:033818.
    [28]
    Linnenbank H, Steinle T, Giessen H. Narrowband cw injection seeded high power femtosecond double-pass optical parametric generator at 43 MHz: gain and noise dynamics. Opt. Express. 2016;24:19558–66.
    [29]
    Chen W, Fan J, Ge A, Song H, Song Y, Liu B, Hu M. Intensity and temporal noise characteristics in femtosecond optical parametric amplifiers. Opt Express. 2017;25:31263–72.
    [30]
    Lomsadze B, Smith BC, Cundiff ST. Tri-comb spectroscopy. Nat Photon. 2018;12:676–80.
    [31]
    Rothman LS, Gordon IE, Babikov Y, Barbe A, Chris Benner D, Bernath PF, Birk M, Bizzocchi L, Boudon V, Brown LR, Campargue A, Chance K, Cohen EA, Coudert LH, Devi VM, Drouin BJ, Fayt A, Flaud J-M, Gamache RR, Harrison JJ, Hartmann J-M, Hill C, Hodges JT, Jacquemart D, Jolly A, Lamouroux J, Le Roy RJ, Li G, Long DA, Lyulin OM, Mackie CJ, Massie ST, Mikhailenko S, Müller HSP, Naumenko OV, Nikitin AV, Orphal J, Perevalov V, Perrin A, Polovtseva ER, Richard C, Smith MAH, Starikova E, Sung K, Tashkun S, Tennyson J, Toon GC, Tyuterev VG, Wagner G. The HITRAN 2012 molecular spectroscopic database. J Quant Spectrosc Radiat Transf. 2013;130:4–50.
    [32]
    Gu C, Zuo Z, Luo D, Peng D, Di Y, Zou X, Yang L, Li W. High-repetition-rate femtosecond mid-infrared pulses generated by nonlinear optical modulation of CW QCLs and ICLs. Opt Lett. 2019;44:5848–51.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (128) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return