Citation: | Yun Zhao, Yuanmu Yang, Hong-Bo Sun. Nonlinear meta-optics towards applications[J]. PhotoniX. doi: 10.1186/s43074-021-00025-1 |
[1] |
Franken PA, Hill AE, Peters CW, Weinreich G. Generation of optical harmonics. Phys Rev Lett. 1961;7(4):118–9.
|
[2] |
Shen YR. The principles of nonlinear optics. New York: Wiley; 1984.
|
[3] |
Boyd RW. Nonlinear optics. 3rd ed. New York: Academic; 2008.
|
[4] |
Fejer MM, Magel GA, Jundt DH, Byer RL. Quasi-phase-matched 2nd harmonic-generation-tuning and tolerances. IEEE J Quantum Electron. 1992;28(11):2631–54.
|
[5] |
Yamada M, Nada N, Saitoh M, Watanabe K. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl Phys Lett. 1993;62(5):435–6.
|
[6] |
Myers LE, Eckardt RC, Fejer MM, Byer RL, Bosenberg WR, Pierce JW. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J Opt Soc Am B-Opt Phys. 1995;12(11):2102–16.
|
[7] |
Armstrong JA, Bloembergen N, Ducuing J, Pershan PS. Interactions between light waves in a nonlinear dielectric. Phys Rev. 1962;127(6):1918–39. https://doi.org/10.1103/PhysRev.127.1918.
|
[8] |
Blanchard F, Sharma G, Razzari L, Ropagnol X, Bandulet H-C, Vidal F, Morandotti R, Kieffer JC, Ozaki T, Tiedje H, Haugen H, Reid M, Hegmann F. Generation of intense terahertz radiation via optical methods. IEEE J Selected Topics Quantum Electron. 2011;17(1):5–16. https://doi.org/10.1109/JSTQE.2010.2047715.
|
[9] |
Yan H, Chen J. Narrowband polarization entangled paired photons with controllable temporal length. Sci China-Phys Mech Astronomy. 2015;58(7):1–10.
|
[10] |
Couteau C. Spontaneous parametric down-conversion. Contemp Phys. 2018;59(3):291–304.
|
[11] |
He R, Lin ZS, Zheng T, Huang H, Chen CT. Energy band gap engineering in borate ultraviolet nonlinear optical crystals: ab initio studies. J Phys-Condens Matter. 2012;24(14):145503.
|
[12] |
Wu M, Ghimire S, Reis DA, Schafer KJ, Gaarde MB. High-harmonic generation from Bloch electrons in solids. Phys Rev A. 2015;91(4):043839.
|
[13] |
Ghimire S, Reis DA. High-harmonic generation from solids. Nat Phys. 2019;15(1):10–6.
|
[14] |
Tani M, Fukasawa R, Abe H, Matsuura S, Sakai K, Nakashima S. Terahertz radiation from coherent phonons excited in semiconductors. J Appl Phys. 1998;83(5):2473–7.
|
[15] |
Klein MW, Enkrich C, Wegener M, Linden S. Second-harmonic generation from magnetic metamaterials. Science. 2006;313(5786):502.
|
[16] |
Aouani H, Rahmani M, Navarro-Cia M, Maier SA. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat Nanotechnol. 2014;9(4):290–4.
|
[17] |
Celebrano M, Wu X, Baselli M, Grossmann S, Biagioni P, Locatelli A, et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat Nanotechnol. 2015;10(5):412–7. https://doi.org/10.1038/nnano.2015.69.
|
[18] |
O'Brien K, Suchowski H, Rho J, Salandrino A, Kante B, Yin XB, et al. Predicting nonlinear properties of metamaterials from the linear response. Nat Mater. 2015;14(4):379–83.
|
[19] |
Segal N, Keren-Zur S, Hendler N, Ellenbogen T. Controlling light with metamaterial-based nonlinear photonic crystals. Nat Photonics. 2015;9(3):180–4.
|
[20] |
Palomba S, Zhang S, Park Y, Bartal G, Yin XB, Zhang X. Optical negative refraction by four-wave mixing in thin metallic nanostructures. Nat Mater. 2012;11(1):34–8.
|
[21] |
Ren MX, Plum E, Xu JJ, Zheludev NI. Giant nonlinear optical activity in a plasmonic metamaterial. Nat Commun. 2012;3:833.
|
[22] |
Lee J, Tymchenko M, Argyropoulos C, Chen PY, Lu F, Demmerle F, et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature. 2014;511(7507):65–9.
|
[23] |
Chong KE, Staude I, James A, Dominguez J, Liu S, Campione S, et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett. 2015;15(8):5369–74.
|
[24] |
Li GX, Chen SM, Pholchai N, Reineke B, Wong PWH, Pun EYB, et al. Continuous control of the nonlinearity phase for harmonic generations. Nat Mater. 2015;14(6):607–12.
|
[25] |
Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nat Commun. 2016;7:12533.
|
[26] |
Li G, Zentgraf T, Zhang S. Rotational doppler effect in nonlinear optics. Nat Phys. 2016;12(8):736–40.
|
[27] |
Ellenbogen T, Voloch-Bloch N, Ganany-Padowicz A, Arie A. Nonlinear generation and manipulation of airy beams. Nat Photonics. 2009;3(7):395–8.
|
[28] |
Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science. 2013;339(6125):1232009.
|
[29] |
Meinzer N, Barnes WL, Hooper IR. Plasmonic meta-atoms and metasurfaces. Nat Photonics. 2014;8(12):889–98.
|
[30] |
Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13(2):139–50.
|
[31] |
Linden S, Niesler FBP, Forstner J, Grynko Y, Meier T, Wegener M. Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys Rev Lett. 2012;109(1):6488–92.
|
[32] |
Shcherbakov MR, Neshev DN, Hopkins B, Shorokhov AS, Staude I, Melik-Gaykazyan EV, Decker M, Ezhov AA, Miroshnichenko AE, Brener I, Fedyanin AA, Kivshar YS. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett. 2014;14(11):6488–92. https://doi.org/10.1021/nl503029j.
|
[33] |
Kruk S, Weismann M, Bykov AY, Mamonov EA, Kolmychek IA, Murzina T, et al. Enhanced magnetic second-harmonic generation from resonant metasurfaces. Acs Photonics. 2015;2(8):1007–12.
|
[34] |
Yang Y, Wang W, Boulesbaa A, Kravchenko BDP II, Puretzky A, et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 2015;15(11):7388–93. https://doi.org/10.1021/acs.nanolett.5b02802.
|
[35] |
Konishi K, Higuchi T, Li J, Larsson J, Ishii S, Kuwata-Gonokami M. Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry. Phys Rev Lett. 2014;112(13):135502.
|
[36] |
Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt Lett. 2002;27(13):1141–3.
|
[37] |
Tymchenko M, Gomez-Diaz JS, Lee J, Nookala N, Belkin MA, Alu A. Gradient nonlinear pancharatnam-berry metasurfaces. Phys Rev Lett. 2015;115(20):207403.
|
[38] |
Silveirinha M, Engheta N. Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. Phys Rev Lett. 2006;97(15):157403.
|
[39] |
Alu A, Silveirinha MG, Salandrino A, Engheta N. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Phys Rev B. 2007;75(15):155410.
|
[40] |
Edwards B, Alu A, Young ME, Silveirinha M, Engheta N. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys Rev Lett. 2008;100(3):033903.
|
[41] |
Molesky S, Dewalt CJ, Jacob Z. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt Express. 2013;21(1):A96–A110.
|
[42] |
Niu XX, Hu XY, Chu SS, Gong QH. Epsilon-near-zero photonics: a new platform for integrated devices. Adv Opt Mater. 2018;6(10):1701292.
|
[43] |
Vassant S, Hugonin J-P, Marquier F, Greffet J-J. Berreman mode and epsilon near zero mode. Opt Express. 2012;20(21):23971–7. https://doi.org/10.1364/OE.20.023971.
|
[44] |
Campione S, Brener I, Marquier F. Theory of epsilon-near-zero modes in ultrathin films. Phys Rev B. 2015;91(12):121408.
|
[45] |
Jia W, Liu M, Lu Y, Feng X, Wang Q, Zhang X, et al. Broadband terahertz wave generation from an epsilon-near-zero material. Light: Sci Appl. 2021;10(1):11.
|
[46] |
Liberal I, Engheta N. Near-zero refractive index photonics. Nat Photonics. 2017;11(3):149.
|
[47] |
Engheta N. Pursuing near-zero response. Science. 2013;340(6130):286.
|
[48] |
Reshef O, De Leon I, Alam MZ, Boyd RW. Nonlinear optical effects in epsilon-near-zero media. Nat Rev Mater. 2019;4(8):535–51.
|
[49] |
Kinsey N, DeVault C, Boltasseva A, Shalaev VM. Near-zero-index materials for photonics. Nat Rev Mater. 2019;4(12):742–60.
|
[50] |
Tian W, Liang F, Chi S, Li C, Yu H, Zhang H, et al. Highly efficient super-continuum generation on an epsilon-near-zero surface. ACS Omega. 2020;5(5):2458–64.
|
[51] |
Niu X, Hu X, Sun Q, Lu C, Yang Y, Yang H, et al. Polarization-selected nonlinearity transition in gold dolmens coupled to an epsilon-near-zero material. Nanophotonics. 2020;9(16):4839–51.
|
[52] |
Moitra P, Yang Y, Anderson Z, Kravchenko II, Briggs DP, Valentine J. Realization of an all-dielectric zero-index optical metamaterial. Nat Photonics. 2013;7(10):791–5.
|
[53] |
Capretti A, Wang Y, Engheta N, Dal NL. Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range. ACS Photonics. 2015;2(11):1584–91.
|
[54] |
Capretti A, Wang Y, Engheta N, Dal NL. Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers. Opt Lett. 2015;40(7):1500–3.
|
[55] |
Luk TS, de Ceglia D, Liu S, Keeler GA, Prasankumar RP, Vincenti MA, et al. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films. Appl Phys Lett. 2015;106(15):151103.
|
[56] |
Alam MZ, De Leon I, Boyd RW. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science. 2016;352(6287):795–7. https://doi.org/10.1126/science.aae0330.
|
[57] |
Caspani L, Kaipurath RP, Clerici M, Ferrera M, Roger T, Kim J, et al. Enhanced nonlinear refractive index in epsilon-near-zero materials. Phys Rev Lett. 2016;116(23):233901. https://doi.org/10.1103/PhysRevLett.116.233901.
|
[58] |
Niu X, Hu X, Lu C, Sheng Y, Yang H, Gong Q. Broadband dispersive free, large, and ultrafast nonlinear material platforms for photonics. Nanophotonics. 2020;9(15):4609–18. https://doi.org/10.1515/nanoph-2020-0420.
|
[59] |
Kuttruff J, Garoli D, Allerbeck J, Krahne R, De Luca A, Brida D, et al. Ultrafast all-optical switching enabled by epsilon-near-zero-tailored absorption in metal-insulator nanocavities. Commun Phys. 2020;3(1):114.
|
[60] |
Jiang X, Lu H, Li Q, Zhou H, Zhang S, Zhang H. Epsilon-near-zero medium for optical switches in a monolithic waveguide chip at 1.9 μm. Nanophotonics. 2018;7(11):1835–43. https://doi.org/10.1515/nanoph-2018-0102.
|
[61] |
Chen P-Y, Argyropoulos C, Alu A. Enhanced nonlinearities using plasmonic nanoantennas. Nanophotonics. 2012;1(3–4):221–33.
|
[62] |
Kauranen M, Zayats AV. Nonlinear plasmonics. Nat Photonics. 2012;6(11):737–48. https://doi.org/10.1038/nphoton.2012.244.
|
[63] |
Hou-Tong C, Antoinette JT, Nanfang Y. A review of metasurfaces: physics and applications. Rep Prog Phys. 2016;79(7):076401.
|
[64] |
Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar YS, Luk'yanchuk B. Optically resonant dielectric nanostructures. Science. 2016;354(6314):2472.
|
[65] |
Kruk S, Kivshar Y. Functional meta-optics and nanophotonics governed by Mie resonances. ACS Photonics. 2017;4(11):2638–49. https://doi.org/10.1021/acsphotonics.7b01038.
|
[66] |
Chang S, Guo X, Ni X. Optical metasurfaces: progress and applications. Annu Rev Mater Res. 2018;48(1):279–302.
|
[67] |
Krasnok A, Tymchenko M, Alù A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater Today. 2018;21(1):8–21.
|
[68] |
Zou C, Sautter J, Setzpfandt F, Staude I. Resonant dielectric metasurfaces: active tuning and nonlinear effects. J Phys D Appl Phys. 2019;52(37):373002.
|
[69] |
Pertsch T, Kivshar Y. Nonlinear optics with resonant metasurfaces. MRS Bull. 2020;45(3):210–20. https://doi.org/10.1557/mrs.2020.65.
|
[70] |
Terhune RW, Maker PD, Savage CM. Optical harmonic generation in calcite. Phys Rev Lett. 1962;8(10):404.
|
[71] |
Kang L, Cui YH, Lan SF, Rodrigues SP, Brongersma ML, Cai WS. Electrifying photonic metamaterials for tunable nonlinear optics. Nat Commun. 2014;5:4680.
|
[72] |
Lee K-T, Taghinejad M, Yan J, Kim AS, Raju L, Brown DK, et al. Electrically biased silicon metasurfaces with magnetic Mie sesonance for tunable harmonic generation of light. Acs Photonics. 2019;6(11):2663–70.
|
[73] |
Chen S, Li KF, Li G, Cheah KW, Zhang S. Gigantic electric-field-induced second harmonic generation from an organic conjugated polymer enhanced by a band-edge effect. Light: Sci Appl. 2019;8(1):17.
|
[74] |
Yap BK, Xia R, Campoy-Quiles M, Stavrinou PN, Bradley DDC. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nat Mater. 2008;7(5):376–80. https://doi.org/10.1038/nmat2165.
|
[75] |
Friberg S, Hong CK, Mandel L. Measurement of time delays in the parametric production of photon pairs. Phys Rev Lett. 1985;54(18):2011–3.
|
[76] |
Hong CK, Ou ZY, Mandel L. Measurement of subpicosecond time intervals between 2 photons by interference. Phys Rev Lett. 1987;59(18):2044–6.
|
[77] |
Bocquillon E, Couteau C, Razavi M, Laflamme R, Weihs G. Coherence measures for heralded single-photon sources. Phys Rev A. 2009;79(3):035801.
|
[78] |
O'Brien JL, Furusawa A, Vučković J. Photonic quantum technologies. Nat Photonics. 2009;3(12):687–95.
|
[79] |
Kwiat PG, Mattle K, Weinfurter H, Zeilinger A, Sergienko AV, Shih Y. New high-intensity source of polarization-entangled photon pairs. Phys Rev Lett. 1995;75(24):4337–41.
|
[80] |
Kwiat PG, Waks E, White AG, Appelbaum I, Eberhard PH. Ultrabright source of polarization-entangled photons. Phys Rev A. 1999;60(2):R773–R6.
|
[81] |
Kim T, Fiorentino M, Wong FNC. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer. Phys Rev A. 2006;73(1):012316.
|
[82] |
Yin J, Cao Y, Li Y-H, Liao S-K, Zhang L, Ren J-G, et al. Satellite-based entanglement distribution over 1200 kilometers. Science. 2017;356(6343):1180–4.
|
[83] |
Okoth C, Cavanna A, Santiago-Cruz T, Chekhova MV. Microscale generation of entangled photons without momentum conservation. Phys Rev Lett. 2019;123(26):263602.
|
[84] |
Marino G, Solntsev AS, Xu L, Gili VF, Carletti L, Poddubny AN, et al. Spontaneous photon-pair generation from a dielectric nanoantenna. Optica. 2019;6(11):1416–22.
|
[85] |
Poddubny AN, Iorsh IV, Sukhorukov AA. Generation of photon-plasmon quantum states in nonlinear hyperbolic metamaterials. Phys Rev Lett. 2016;117(12):123901.
|
[86] |
Petrov MI, Nikolaeva AA, Frizyuk KS, Olekhno NA. Second harmonic generation and spontaneous parametric down-conversion in Mie nanoresonators. J Phys: Conf Ser. 2018;1124:051021.
|
[87] |
Song H, Nagatsuma T. Present and future of terahertz communications. IEEE Trans Terahertz Sci Technol. 2011;1(1):256–63.
|
[88] |
Nagatsuma T, Ducournau G, Renaud CC. Advances in terahertz communications accelerated by photonics. Nat Photonics. 2016;10(6):371–9.
|
[89] |
Wade CG, Šibalić N, de Melo NR, Kondo JM, Adams CS, Weatherill KJ. Real-time near-field terahertz imaging with atomic optical fluorescence. Nat Photonics. 2017;11(1):40–3.
|
[90] |
Stantchev RI, Sun B, Hornett SM, Hobson PA, Gibson GM, Padgett MJ, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci Adv. 2016;2(6):e1600190.
|
[91] |
Mathanker SK, Weckler PR, Wang N. Terahertz (THz) applications in food and agriculture: a review. Trans ASABE. 2013;56(3):1213–26.
|
[92] |
Federici JF, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, et al. THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond Sci Technol. 2005;20(7):S266–S80.
|
[93] |
Liu J, Dai J, Chin SL, Zhang XC. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nat Photonics. 2010;4(9):627–31.
|
[94] |
Xu W, Xie L, Zhu J, Xu X, Ye Z, Wang C, et al. Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications. ACS Photonics. 2016;3(12):2308–14.
|
[95] |
Nahata A, Weling AS, Heinz TF. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Appl Phys Lett. 1996;69(16):2321–3.
|
[96] |
Wu Q, Litz M, Zhang XC. Broadband detection capability of ZnTe electro-optic field detectors. Appl Phys Lett. 1996;68(21):2924–6.
|
[97] |
Hebling J, Almasi G, Kozma IZ, Kuhl J. Velocity matching by pulse front tilting for large-area THz-pulse generation. Opt Express. 2002;10(21):1161–6.
|
[98] |
Yeh KL, Hoffmann MC, Hebling J, Nelson KA. Generation of 10 mu J ultrashort terahertz pulses by optical rectification. Appl Phys Lett. 2007;90(17):171121.
|
[99] |
Luo L, Chatzakis I, Wang J, Niesler FBP, Wegener M, Koschny T, et al. Broadband terahertz generation from metamaterials. Nat Commun. 2014;5(1):3055.
|
[100] |
Keren-Zur S, Tal M, Fleischer S, Mittleman DM, Ellenbogen T. Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces. Nat Commun. 2019;10(1):1778.
|
[101] |
Fang M, Shen NH, Sha WEI, Huang Z, Koschny T, Soukoulis CM. Nonlinearity in the dark: broadband terahertz generation with extremely high efficiency. Phys Rev Lett. 2019;122(2):027401.
|
[102] |
Okawachi Y, Saha K, Levy JS, Wen YH, Lipson M, Gaeta AL. Octave-spanning frequency comb generation in a silicon nitride chip. Opt Lett. 2011;36(17):3398–400.
|
[103] |
Jung H, Xiong C, Fong KY, Zhang X, Tang HX. Optical frequency comb generation from aluminum nitride microring resonator. Opt Lett. 2013;38(15):2810–3.
|
[104] |
Shen Y, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics. 2017;11(7):441–6.
|
[105] |
Taghinejad M, Cai WS. All-optical control of light in micro- and nanophotonics. Acs Photonics. 2019;6(5):1082–93.
|
[106] |
Almeida VR, Barrios CA, Panepucci RR, Lipson M. All-optical control of light on a silicon chip. Nature. 2004;431(7012):1081–4.
|
[107] |
Pelc JS, Rivoire K, Vo S, Santori C, Fattal DA, Beausoleil RG. Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators. Opt Express. 2014;22(4):3797–810.
|
[108] |
Shcherbakov MR, Vabishchevich PP, Shorokhov AS, Chong KE, Choi DY, Staude I, Miroshnichenko AE, Neshev DN, Fedyanin AA, Kivshar YS. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett. 2015;15(10):6985–90. https://doi.org/10.1021/acs.nanolett.5b02989.
|
[109] |
Wurtz GA, Pollard R, Hendren W, Wiederrecht GP, Gosztola DJ, Podolskiy VA, et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat Nanotechnol. 2011;6(2):106–10.
|
[110] |
Guo PJ, Schaller RD, Ketterson JB, Chang RPH. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat Photonics. 2016;10(4):267–73. https://doi.org/10.1038/nphoton.2016.14.
|
[111] |
Clerici M, Kinsey N, DeVault C, Kim J, Carnemolla EG, Caspani L, et al. Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation. Nat Commun. 2017;8:15829.
|
[112] |
Yang YM, Kelley K, Sachet E, Campione S, Luk TS, Maria JP, et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat Photonics. 2017;11(6):390–5.
|
[113] |
Alam MZ, Schulz SA, Upham J, De Leon I, Boyd RW. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat Photonics. 2018;12(2):79–83.
|
[114] |
Voisin C, Del Fatti N, Christofilos D, Vallée F. Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J Phys Chem B. 2001;105(12):2264–80.
|
[115] |
Krasavin AV, Ginzburg P, Zayats AV. Free-electron optical nonlinearities in plasmonic nanostructures: a review of the hydrodynamic description. Laser Photonics Rev. 2018;12(1):1700082.
|
[116] |
Del Fatti N, Bouffanais R, Vallee F, Flytzanis C. Nonequilibrium electron interactions in metal films. Phys Rev Lett. 1998;81(4):922–5.
|
[117] |
Ren MX, Jia BH, Ou JY, Plum E, Zhang JF, MacDonald KF, et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv Mater. 2011;23(46):5540–4. https://doi.org/10.1002/adma.201103162.
|
[118] |
Kinsey N, DeVault C, Kim J, Ferrera M, Shalaev VM, Boltasseva A. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica. 2015;2(7):616–22. https://doi.org/10.1364/OPTICA.2.000616.
|
[119] |
Guo QB, Cui YD, Yao YH, Ye YT, Yang Y, Liu XM, et al. A solution-processed ultrafast optical switch based on a nanostructured epsilon-near-zero medium. Adv Mater. 2017;29(27):7.
|
[120] |
Wang J, Coillet A, Demichel O, Wang Z, Rego D, Bouhelier A, et al. Saturable plasmonic metasurfaces for laser mode locking. Light Sci Appl. 2020;9:50.
|
[121] |
Kartner FX, Jung ID, Keller U. Soliton mode-locking with saturable absorbers. IEEE J Selected Topics Quantum Electron. 1996;2(3):540–56. https://doi.org/10.1109/2944.571754.
|
[122] |
Keller U, Weingarten KJ, Kartner FX, Kopf D, Braun B, Jung ID, et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J Selected Topics Quantum Electron. 1996;2(3):435–53.
|
[123] |
Spuhler GJ, Paschotta R, Fluck R, Braun B, Moser M, Zhang G, et al. Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers. J Opt Soc Am B-Opt Phys. 1999;16(3):376–88. https://doi.org/10.1364/JOSAB.16.000376.
|
[124] |
Keller U. Recent developments in compact ultrafast lasers. Nature. 2003;424(6950):831–8.
|
[125] |
Keller U, Tropper AC. Passively modelocked surface-emitting semiconductor lasers. Phys Rep-Rev Sect Phys Lett. 2006;429(2):67–120.
|
[126] |
Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen ZX, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater. 2009;19(19):3077–83.
|
[127] |
Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, et al. Graphene mode-locked ultrafast laser. ACS Nano. 2010;4(2):803–10.
|
[128] |
Sun Z, Hasan T, Ferrari AC. Ultrafast lasers mode-locked by nanotubes and graphene. Physica E-Low-Dimensional Syst Nanostructures. 2012;44(6):1082–91.
|
[129] |
Martinez A, Sun Z. Nanotube and graphene saturable absorbers for fibre lasers. Nat Photonics. 2013;7(11):842–5.
|
[130] |
Wang K, Wang J, Fan J, Lotya M, O'Neill A, Fox D, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano. 2013;7(10):9260–7. https://doi.org/10.1021/nn403886t.
|
[131] |
Woodward RI, Kelleher EJR, Howe RCT, Hu G, Torrisi F, Hasan T, et al. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Opt Express. 2014;22(25):31113–22.
|
[132] |
Luo Z, Wu D, Xu B, Xu H, Cai Z, Peng J, Weng J, Xu S, Zhu C, Wang F, Sun Z, Zhang H. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers. Nanoscale. 2016;8(2):1066–72. https://doi.org/10.1039/C5NR06981E.
|
[133] |
Li D, Jussila H, Karvonen L, Ye G, Lipsanen H, Chen X, et al. Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation. Sci Rep. 2015;5:15899.
|
[134] |
Wang Y, Huang G, Mu H, Lin S, Chen J, Xiao S, et al. Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension. Appl Phys Lett. 2015;107(9):091905.
|
[135] |
Hu G, Albrow-Owen T, Jin X, Ali A, Hu Y, Howe RCT, et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat Commun. 2017;8:278.
|
[136] |
Krause JL, Schafer KJ, Kulander KC. High-order harmonic generation from atoms and ions in the high intensity regime. Phys Rev Lett. 1992;68(24):3535–8.
|
[137] |
Schafer KJ, Yang B, DiMauro LF, Kulander KC. Above threshold ionization beyond the high harmonic cutoff. Phys Rev Lett. 1993;70(11):1599–602. https://doi.org/10.1103/PhysRevLett.70.1599.
|
[138] |
Corkum PB. Plasma perspective on strong field multiphoton ionization. Phys Rev Lett. 1993;71(13):1994–7.
|
[139] |
Stolow A, Bragg AE, Neumark DM. Femtosecond time-resolved photoelectron spectroscopy. Chem Rev. 2004;104(4):1719–57. https://doi.org/10.1021/cr020683w.
|
[140] |
Cavalieri AL, Mueller N, Uphues T, Yakovlev VS, Baltuska A, Horvath B, et al. Attosecond spectroscopy in condensed matter. Nature. 2007;449(7165):1029–32.
|
[141] |
Corkum PB, Krausz F. Attosecond science. Nat Phys. 2007;3(6):381–7.
|
[142] |
Krausz F, Ivanov M. Attosecond Phys. Rev Mod Phys. 2009;81(1):163–234.
|
[143] |
Ferray M, Lhuillier A, Li XF, Lompre LA, Mainfray G, Manus C. Multiple-harmonic conversion of 1064-nm radiation in rare-gases. J Phys B-Atom Mol Opt Phys. 1988;21(3):L31–L5.
|
[144] |
Baltuska A, Udem T, Uiberacker M, Hentschel M, Goulielmakis E, Gohle C, et al. Attosecond control of electronic processes by intense light fields. Nature. 2003;421(6923):611–5.
|
[145] |
McFarland BK, Farrell JP, Bucksbaum PH, Gühr M. High harmonic generation from multiple orbitals in N2. Science. 2008;322(5905):1232.
|
[146] |
Kim S, Jin J, Kim Y-J, Park I-Y, Kim Y, Kim S-W. High-harmonic generation by resonant plasmon field enhancement. Nature. 2008;453(7196):757–60.
|
[147] |
Ghimire S, DiChiara AD, Sistrunk E, Agostini P, DiMauro LF, Reis DA. Observation of high-order harmonic generation in a bulk crystal. Nat Phys. 2011;7(2):138–41.
|
[148] |
Luu TT, Garg M, Kruchinin SY, Moulet A, Hassan MT, Goulielmakis E. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature. 2015;521(7553):498–502.
|
[149] |
Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat Photonics. 2014;8(2):119–23.
|
[150] |
Han S, Kim H, Kim YW, Kim Y-J, Kim S, Park I-Y, et al. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure. Nat Commun. 2016;7(1):13105.
|
[151] |
Vampa G, Ghamsari BG, Siadat Mousavi S, Hammond TJ, Olivieri A, Lisicka-Skrek E, et al. Plasmon-enhanced high-harmonic generation from silicon. Nat Phys. 2017;13(7):659–62.
|
[152] |
Liu H, Guo C, Vampa G, Zhang JL, Sarmiento T, Xiao M, et al. Enhanced high-harmonic generation from an all-dielectric metasurface. Nat Phys. 2018;14(10):1006–10.
|
[153] |
Yang Y, Lu J, Manjavacas A, Luk TS, Liu H, Kelley K, Maria JP, Runnerstrom EL, Sinclair MB, Ghimire S, Brener I. High-harmonic generation from an epsilon-near-zero material. Nat Phys. 2019;15(10):1022–6. https://doi.org/10.1038/s41567-019-0584-7.
|
[154] |
Sivis M, Taucer M, Vampa G, Johnston K, Staudte A, Naumov AY, Villeneuve DM, Ropers C, Corkum PB. Tailored semiconductors for high-harmonic optoelectronics. Science. 2017;357(6348):303–6. https://doi.org/10.1126/science.aan2395.
|
[155] |
Wang J, Bo F, Wan S, Li W, Gao F, Li J, et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt Express. 2015;23(18):23072–8.
|
[156] |
Rao A, Patil A, Rabiei P, Honardoost A, Desalvo R, Paolella A, et al. High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz. Opt Lett. 2016;41(24):5700–3.
|
[157] |
Liang H, Luo R, He Y, Jiang H, Lin Q. High-quality lithium niobate photonic crystal nanocavities. Optica. 2017;4(10):1251–8.
|
[158] |
Zhang M, Wang C, Cheng R, Shams-Ansari A, Loncar M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica. 2017;4(12):1536–7.
|
[159] |
Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature. 2018;562(7725):101–4. https://doi.org/10.1038/s41586-018-0551-y.
|
[160] |
Wang C, Zhang M, Stern B, Lipson M, Loncar M. Nanophotonic lithium niobate electro-optic modulators. Opt Express. 2018;26(2):1547–55.
|
[161] |
Gao BF, Ren MX, Wu W, Hu H, Cai W, Xu JJ. Lithium niobate metasurfaces. Laser Photonics Rev. 2019;13(5):6.
|
[162] |
Vabishchevich PP, Liu S, Sinclair MB, Keeler GA, Peake GM, Brener I. Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces. ACS Photonics. 2018;5(5):1685–90. https://doi.org/10.1021/acsphotonics.7b01478.
|
[163] |
Koshelev K, Tang Y, Li K, Choi D-Y, Li G, Kivshar Y. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics. 2019;6(7):1639–44.
|
[164] |
Liu Z, Xu Y, Lin Y, Xiang J, Feng T, Cao Q, et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys Rev Lett. 2019;123(25):253901.
|
[165] |
Lin Z, Liang X, Loncar M, Johnson SG, Rodriguez AW. Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization. Optica. 2016;3(3):233–8.
|
[166] |
Hughes TW, Minkov M, Williamson IAD, Fan S. Adjoint method and inverse design for nonlinear nanophotonic devices. ACS Photonics. 2018;5(12):4781–7.
|
[167] |
Sitawarin C, Jin W, Lin Z, Rodriguez AW. Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion invited. Photonics Research. 2018;6(5):B82–B9.
|
[168] |
Lei X, Rahmani M, Yixuan M, Smirnova DA, Kamali KZ, Fu D, et al. Enhanced light-matter interactions in dielectric nanostructures via machine-learning approach. Adv Photonics. 2020;2(2):026003.
|
[169] |
Shi L, Iwan B, Nicolas R, Ripault Q, Andrade JRC, Han S, et al. Self-optimization of plasmonic nanoantennas in strong femtosecond fields. Optica. 2017;4(9):1038–43.
|
[170] |
Zimmermann P, Hötger A, Fernandez N, Nolinder A, Müller K, Finley JJ, et al. Toward plasmonic tunnel gaps for nanoscale photoemission currents by on-chip laser ablation. Nano Lett. 2019;19(2):1172–8.
|
[171] |
Li Z-Z, Wang L, Fan H, Yu Y-H, Sun H-B, Juodkazis S, et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light-Sci Appl. 2020;9(1):41.
|
[172] |
Liu X-Q, Yu L, Yang S-N, Chen Q-D, Wang L, Juodkazis S, et al. Optical nanofabrication of concave microlens arrays. Laser Photonics Rev. 2019;13(5):1800272.
|
[173] |
Liu X-Q, Yang S-N, Yu L, Chen Q-D, Zhang Y-L, Sun H-B. Rapid engraving of artificial compound eyes from curved sapphire substrate. Adv Funct Mater. 2019;29(18):1900037.
|
[174] |
Wei D, Wang C, Wang H, Hu X, Wei D, Fang X, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat Photonics. 2018;12(10):596–600.
|