Citation: | Jia Liu, Qiuhao Wu, Xiubao Sui, Qian Chen, Guohua Gu, Liping Wang, Shengcai Li. Research progress in optical neural networks: theory, applications and developments[J]. PhotoniX. doi: 10.1186/s43074-021-00026-0 |
[1] |
Hines ML, Carnevale NT. The neuron simulation environment. Neural Comput. 1997;9(6):1179–209. https://doi.org/10.1162/neco.1997.9.6.1179.
|
[2] |
Schwabe RJ, Zelinger S, Key TS, Phipps KO. Electronic lighting interference. IEEE Ind Appl Mag. 1998;4:46–8.
|
[3] |
Markram H, Muller E, Ramaswamy S. Reconstruction and simulation of neocortical microcircuitry. Cell. 2015;163(2):456–92. https://doi.org/10.1016/j.cell.2015.09.029.
|
[4] |
Tsai F-CF, O'Brien CJ, Petrović NS, Rakić AD. Analysis of optical channel cross talk for free-space optical interconnects in the presence of higher-order transverse modes. Appl Optics. 2005;44(30):6380–7. https://doi.org/10.1364/AO.44.006380.
|
[5] |
Hu W, Li X, Yang J, Kong D. Crosstalk analysis of aligned and misaligned free-space optical interconnect systems. J Opt Soc Am A. 2010;27(2):200–5. https://doi.org/10.1364/JOSAA.27.000200.
|
[6] |
Goodman JW, Dias AR, Woody LM. Fully parallel, high-speed incoherent optical method for performing discrete fourier transforms. Opt Lett. 1978;2(1):1–3. https://doi.org/10.1364/OL.2.000001.
|
[7] |
Hu X, Wang A, Zeng M, Long Y, Zhu L, Fu L, et al. Graphene-assisted multiple-input high-base optical computing. Sci Rep. 2016;6:32911.
|
[8] |
Caulfield HJ, Dolev S. Why future supercomputing requires optics. Nat Photon. 2010;4(5):261–3. https://doi.org/10.1038/nphoton.2010.94.
|
[9] |
Mosca EP, Griffin RD, Pursel FP, Lee JN. Acoustooptical matrix-vector product processor: implementationissues. Appl Optics. 1989;28(18):3843–51. https://doi.org/10.1364/AO.28.003843.
|
[10] |
Sun C-C, Chang M-W, Hsu KY. Matrix-matrix multiplication by using anisotropic self-diffraction in batio3. Appl Optics. 1994;33:4501X507.
|
[11] |
Nasr MB, Chtourou M. A hybrid training algorithm for feedforward neural networks. Neural Process Lett. 2006;24(2):107–17. https://doi.org/10.1007/s11063-006-9013-x.
|
[12] |
de Lima TF, Shastri BJ, Tait AN, Nahmias MA, Prucna PR. Progress in neuromorphic photonics. Nanophotonics. 2017;6(3):577–99. https://doi.org/10.1515/nanoph-2016-0139.
|
[13] |
Chen Y. 4f-type optical system for matrix multiplication. Optim Eng. 1993;32.
|
[14] |
PIAGGIO HTH. The mathematical theory of huygens' principle. Nature. 1940;145(3675):531–2. https://doi.org/10.1038/145531a0.
|
[15] |
Young T. The Bakerian lecture. Experiments and calculations relative to physical optics. Abstr Pap Print Philos Transactions Royal Soc Lond. 1832;1:131–2.
|
[16] |
Mandel L, Wolf E. Some properties of coherent light*. J Opt Soc Am. 1961;51(8):815–9. https://doi.org/10.1364/JOSA.51.000815.
|
[17] |
Porter MB. Concerning green's theorem and the cauchy-riemann differential equations. Ann Math Sec Ser. 1905;7(1):1–2. https://doi.org/10.2307/1967189.
|
[18] |
AL-Jawary MA, Wrobel LC. Numerical solution of the two-dimensional helmholtz equation with variable coefficients by the radial integration boundary integral and integro-differential equation methods. Int J Comput Math. 2012;89:1463–87.
|
[19] |
Umul YZ. Young-kirchhoff-rubinowicz theory of diffraction in the light of sommerfeld's solution. J Opt Soc Am A. 2008;25(11):2734–42. https://doi.org/10.1364/JOSAA.25.002734.
|
[20] |
Sommerfeld A. Optics. Lectures on theoretical physics, vol. iv. Am J Physiol. 1955;23(7):477–8. https://doi.org/10.1119/1.1934064.
|
[21] |
Goodman J. Introduction to Fourier optics: 2rd Edition, Roberts and Company Publishers, Englewood; 1995. p. 35.
|
[22] |
Karczewski B. Fraunhofer diffraction of an electromagnetic wave. J Opt Soc Am. 1961;51(10):1055–7. https://doi.org/10.1364/JOSA.51.001055.
|
[23] |
Wang X, Xu Q, Liu E. Angular spectrum theory to calculate coupling efficiency in rectangular waveguide resonators. Opt Laser Technol. 2000;32(3):177–81. https://doi.org/10.1016/S0030-3992(00)00037-2.
|
[24] |
Lin X, Rivenson Y, Yardimci NT, Veil M, Luo Y, Jarrahi M, et al. All-optical machine learning using diffractive deep neural networks. Science. 2018;361(6406):1004–8. https://doi.org/10.1126/science.aat8084.
|
[25] |
Lu L, Zhu L, Zhang Q, Zhu B, Yao Q, Yu M, et al. Miniaturized diffraction grating design and processing for deep neural network. IEEE Photon Technol Lett. 2019;31(24):1952–5. https://doi.org/10.1109/LPT.2019.2948626.
|
[26] |
Qian C, Lin X, Xu J, Sun Y, Li E, Zhang B, et al. Performing optical logic operations by a diffractive neural network. Light Sci Appl. 2020;9(1):59. https://doi.org/10.1038/s41377-020-0303-2.
|
[27] |
Luo Y, Mengu D, Yardimci NT, Rivenson Y, Veli M, Jarrahi M, et al. Design of task-specific optical systems using broadband diffractive neural networks. Light Sci Appl. 2019;8(1):112. https://doi.org/10.1038/s41377-019-0223-1.
|
[28] |
Liao D, Chan KF, Chan CH, Zhang Q, Wang H. All-optical diffractive neural networked terahertz hologram. Opt Lett. 2020;45(10):2906–9. https://doi.org/10.1364/OL.394046.
|
[29] |
Blackwell CA, Simpson RS. The convolution theorem in modern analysis. IEEE Transact Educ. 1966;9(1):29–32. https://doi.org/10.1109/TE.1966.4321930.
|
[30] |
Lu T, Wu S, Xu X, Yu FTS. Two-dimensional programmable optical neural network. Appl Optics. 1989;28(22):4908–13. https://doi.org/10.1364/AO.28.004908.
|
[31] |
Gao S, Yang J, Feng Z, Zhang Y. Implementation of a large-scale optical neural network by use of a coaxial lenslet array for interconnection. Appl Optics. 1997;36(20):4779–83. https://doi.org/10.1364/AO.36.004779.
|
[32] |
Kuratomi Y, Takimoto A, Akiyama K, Ogawa H. Optical neural network using vector-feature extraction. Appl Optics. 1993;32(29):5750–8. https://doi.org/10.1364/AO.32.005750.
|
[33] |
Chang J, Sitzmann V, Dun X, Heidrich W, Wetzstein G. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci Rep. 2018;8:12324.
|
[34] |
Zuo Y, Li B, Zhao Y, Jiang Y, Chen Y-C, Chen P, et al. All-optical neural network with nonlinear activation functions. Optica. 2019;6(9):1132–7. https://doi.org/10.1364/OPTICA.6.001132.
|
[35] |
Breit G. The interference of light and the quantum theory. Proc Natl Acad Sci. 1923;9(7):238–43. https://doi.org/10.1073/pnas.9.7.238.
|
[36] |
Shen Y, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, et al. Deep learning with coherent nanophotonic circuits. Nat Photon. 2017;11:44H46.
|
[37] |
Elson JM, Rahn JP, Bennett JM. Light scattering from multilayer optics: comparison of theory and experiment. Appl Optics. 1980;19(5):669–79. https://doi.org/10.1364/AO.19.000669.
|
[38] |
Rochon P, Bissonnette D. Lensless imaging due to back-scattering. Nature. 1990;348(6303):708–10. https://doi.org/10.1038/348708a0.
|
[39] |
Vellekoop IM, Mosk AP. Focusing coherent light through opaque strongly scattering media. Opt Lett. 2007;32(16):2309–11. https://doi.org/10.1364/OL.32.002309.
|
[40] |
Katz O, Small E, Silberberg Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nat Photon. 2012;6(8):549–53. https://doi.org/10.1038/nphoton.2012.150.
|
[41] |
Vellekoop IM, Lagendijk A, Mosk AP. Exploiting disorder for perfect focusing. Nat Photon. 2010;4(5):320–2. https://doi.org/10.1038/nphoton.2010.3.
|
[42] |
Bertolotti J, van Putten EG, Akbulut D, Vos WL, Lagendjk A, Mosk AP. Scattering optics resolve nanostructure. In: Proc. SPIE 8102, Nanoengineering: fabrication, properties, optics, and devices VIII; 2011. p. 810206.
|
[43] |
Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81. https://doi.org/10.1126/science.1957169.
|
[44] |
Katz O, Heidmann P, Fink M, Gigan S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat Photon. 2014;8(10):784–90. https://doi.org/10.1038/nphoton.2014.189.
|
[45] |
Yaqoob Z, Psaltis D, Feld MS, Yang C. Optical phase conjugation for turbidity suppression in biological samples. Nat Photon. 2008;2(2):110–5. https://doi.org/10.1038/nphoton.2007.297.
|
[46] |
Ando T, Horisaki R, Tanida J. Speckle-learning-based object recognition through scattering media. Opt Express. 2015;23(26):33902–10. https://doi.org/10.1364/OE.23.033902.
|
[47] |
Pierangeli D, Marcucci G, Moriconi C, Perini G, Spirito MD, Papi EAM. Deep optical neural network by living tumour brain cells. Physis. 2018.
|
[48] |
Khoram E, Chen A, Liu D, Ying L, Wang Q, Yuan M, et al. Nanophotonic media for artificial neural inference. Photon Res. 2019;7(8):823–7. https://doi.org/10.1364/PRJ.7.000823.
|
[49] |
Qu Y, Zhu HZ, Shen YC, Zhang J, Tao CN, Ghosh P, et al. Inverse design of an integrated-nanophotonics optical neural network. Sci Bull. 2020;65(14):1177–83. https://doi.org/10.1016/j.scib.2020.03.042.
|
[50] |
Koester CJ. Wavelength multiplexing in fiber optics. J Opt Soc Am. 1968;58(1):63–70. https://doi.org/10.1364/JOSA.58.000063.
|
[51] |
Paquot Y, Duport F, Smerieri A, Dambre J, Schrauwen B, Haelterman M, et al. Optoelectronic reservoir computing. Sci Rep. 2012;2:287.
|
[52] |
Duport F, Schneider B, Smerieri A, Haelterman M, Massar S. All-optical reservoir computing. Opt Express. 2012;20(20):22783–95. https://doi.org/10.1364/OE.20.022783.
|
[53] |
Cheng T-Y, Chou D-Y, Liu C-C, Chang Y-J, Chen C-C. Optical neural networks based on optical fiber-communication. Neurocomputing. 2019;364:239–44. https://doi.org/10.1016/j.neucom.2019.07.051.
|
[54] |
Zang Y, Chen M, Yang S, Chen H. Electro-optical neural networks based on time-stretch method. IEEE J Sel Top Quantum Electron. 2020;26(1):1–10. https://doi.org/10.1109/JSTQE.2019.2957446.
|
[55] |
Zhang H, Feng X, Li B, Wang Y, Cui K, Liu F, et al. Integrated photonic reservoir computing based on hierarchical time-multiplexing structure. Opt Express. 2014;22(25):31356–70. https://doi.org/10.1364/OE.22.031356.
|
[56] |
Nguimdo RM, Verschaffelt G, Danckaert J, der Sande GV. Simultaneous computation of two independent tasks using reservoir computing based on a single photonic nonlinear node with optical feedback. IEEE Transact Neur Netw Learn Syst. 2015;26(12):3301–7. https://doi.org/10.1109/TNNLS.2015.2404346.
|
[57] |
Maass W. Networks of spiking neurons: the third generation of neural network models. Neural Netw. 1997;10(9):1659–71. https://doi.org/10.1016/S0893-6080(97)00011-7.
|
[58] |
Tait AN, de Lima TF, Zhou E, Wu AX, Nahmias MA, Shastri BJ, et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci Rep. 2017;7:7430.
|
[59] |
Shastri BJ, Nahmias MA, Tait AN, Rodriguez AW, Wu B, Prucnal PR. Spike processing with a graphene excitable laser. Sci Rep. 2016;6:19126.
|
[60] |
Chakraborty I, Saha G, Sengupta A, Roy K. Toward fast neural computing using all-photonic phase change spiking neurons. Sci Rep. 2018;8:12980.
|
[61] |
Feldmann J, Youngblood N, Wright CD, Bhaskaran H, Pernice WHP. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature. 2019;569(7755):208–14. https://doi.org/10.1038/s41586-019-1157-8.
|
[62] |
Nahmias MA, Peng H, de Lima TF, Huang C, Tait AN, Shastri BJ, Prucnal PR. A TeraMAC neuromorphic photonic processor. In: 2018 IEEE photonics Conf. (IPC); 2018. p. 1–2.
|
[63] |
Tait AN, Nahmias MA, Shastri BJ, Prucnal PR. Broadcast and weight: an integrated network for scalable photonic spike processing. J Light Technol. 2014;32(21):4029–41. https://doi.org/10.1109/JLT.2014.2345652.
|
[64] |
Shainline JM, Buckley SM, McCaughan AN, Chiles J, Jafari-Salim A, Mirin RP, et al. Circuit designs for superconducting optoelectronic loop neurons. J Appl Phys. 2018;124(15):152130. https://doi.org/10.1063/1.5038031.
|
[65] |
Selden AC. Pulse transmission through a saturable absorber. Br J Appl Phys. 1967;18(6):743–8. https://doi.org/10.1088/0508-3443/18/6/306.
|
[66] |
Braunstein R. Nonlinear optical effects. Phys Rev. 1962;125(2):475–7. https://doi.org/10.1103/PhysRev.125.475.
|
[67] |
Cotton A. Recherches Sur l'absorption et la dispersion de la lumiere par les milieux doues du pouvoir rotatoire. J Phys Theor Appl. 1896;5(1):237–44. https://doi.org/10.1051/jphystap:018960050023700.
|
[68] |
Skinner SR, Steck JE, Behrman EC. Optical neural network using Kerr-type nonlinear materials. In: Proceedings of the fourth international conference on microelectronics for neural networks and fuzzy systems: IEEE; 1994. p. 12–5.
|
[69] |
Dejonckheere A, Duport F, Smerieri A, Fang L, Oudar J-L, Haelterman M, et al. All-optical reservoir computer based on saturation of absorption. Opt Express. 2014;22(9):10868–81. https://doi.org/10.1364/OE.22.010868.
|
[70] |
Cheng Z, Tsang HK, Wan X, Xu K, Xu J. In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides. IEEE J Sel Top Quant Electron. 2013;20:43–8.
|
[71] |
Soljacic M, Ibanescu M, Johnson SG, Fink Y, Joannopoulos JD. Optimal bistable switching in nonlinear photonic crystals. Phys Rev E. 2002;66(5):055601. https://doi.org/10.1103/PhysRevE.66.055601.
|
[72] |
Coarer FD, Sciamanna M, Katumba A, Freiberger M, Dambre J, Bienstman P, et al. All-optical reservoir computing on a photonic chip using silicon-based ring resonators. IEEE J Sel Top Quant Electron. 2018;24(6):1–8. https://doi.org/10.1109/JSTQE.2018.2836985.
|
[73] |
Serber R. The theory of depolarization, optical anisotropy, and the Kerr effect. Phys Rev. 1933;43(12):1003–10. https://doi.org/10.1103/PhysRev.43.1003.
|
[74] |
Weinberger P. John Kerr and his effects found in 1877 and 1878. Philos Mag Lett. 2008;88(12):897–907. https://doi.org/10.1080/09500830802526604.
|
[75] |
Mesaritakis C, Kapsalis A, Syvridis D. All-optical reservoir computing system based on ingaasp ring resonators for high-speed identification and optical routing in optical networks. Quant Sens Nanophoton Devices XII. 2015;9370:608–14.
|
[76] |
Steinbrecher GR, Olson JP, Englund D, Carolan J. Quantum optical neural networks. NPJ Quant Inf. 2019;5:60.
|
[77] |
Amin R, George J, Khurgin J, El-Ghazawi T, Prucnal PR, Sorger VJ. Attojoule modulators for photonic neuromorphic computing. In: Conference on lasers and electro-optics: Optical Society of America; 2018. p. ATh1Q.4.
|
[78] |
Amin R, Khan S, Lee CJ, Dalir H, Sorger VJ. 110 attojoule-per-bit efficient graphene-based plasmon modulator on silicon. In: Conference on lasers and electro-optics: Optical Society of America; 2018. p. SM1I.5.
|
[79] |
George JK, Mehrabian A, Amin R, Meng J, de Lima TF, Tait AN, et al. Neuromorphic photonics with electro-absorption modulators. Opt Express. 2019;27(4):5181–91. https://doi.org/10.1364/OE.27.005181.
|
[80] |
George J, Amin R, Mehrabian A, Khurgin J, El-Ghazawi T, Prucnal PR, Sorger VJ. Electrooptic nonlinear activation functions for vector matrix multiplications in optical neural networks. In: Advanced photonics 2018 (BGPP, IPR, NP, NOMA, sensors, networks, SPPCom, SOF): Optical Society of America; 2018. p. SpW4G.3.
|
[81] |
Miscuglio M, Mehrabian A, Hu Z, Azzam SI, George J, Kildishev AV, et al. All-optical nonlinear activation function for photonic neural networks. Opt Mater Express. 2018;8:3851–63.
|
[82] |
Fleischhauer M, Imamoglu A, Marangos JP. Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys. 2005;77(2):633–73. https://doi.org/10.1103/RevModPhys.77.633.
|
[83] |
Williamson IAD, Hughes TW, Minkov M, Bartlett B, Pai S, Fan S. Reprogrammable electro-optic nonlinear activation functions for optical neural networks. IEEE J Sel Top Quantum Electron. 2020;26(1):1–12. https://doi.org/10.1109/JSTQE.2019.2930455.
|
[84] |
Mengu D, Luo Y, Rivenson Y, Ozcan A. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE J Sel Top Quantum Electron. 2020;26(1):1–14. https://doi.org/10.1109/JSTQE.2019.2921376.
|
[85] |
Zhou T, Fang L, Yan T, Wu J, Li Y, Fan J, et al. In situ optical backpropagation training of diffractive optical neural networks. Photon Res. 2020;8(6):940–53. https://doi.org/10.1364/PRJ.389553.
|
[86] |
Hughes TW, Minkov M, Shi Y, Fan S. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica. 2018;5(7):864–71. https://doi.org/10.1364/OPTICA.5.000864.
|
[87] |
Hughes TW, Williamson IAD, Minkov M, Fan S. Wave physics as an analog recurrent neural network. Sci Adv. 2019;5(12):eaay6946.
|
[88] |
Ba A, Kovalenko A, Aristegui C, Mondain-Monval O, Brunet T. Soft porous silicone rubbers with ultra-low sound speeds in acoustic metamaterials. Sci Rep. 2017;7:40106.
|
[89] |
Qiu J, Si J, Hirao K. Photoinduced stable second-harmonic generation in chalcogenide glasses. Opt Lett. 2001;26(12):914–6. https://doi.org/10.1364/OL.26.000914.
|
[90] |
Karmarkar UR, Najarian MT, Buonomano DV. Mechanisms and significance of spike-timing dependent plasticity. Biol Cybern. 2002;87(5-6):373–82. https://doi.org/10.1007/s00422-002-0351-0.
|
[91] |
Xiang S, Ren Z, Zhang Y, Song Z, Guo X, Han G, et al. Training a multi-layer photonic spiking neural network with modified supervised learning algorithm based on photonic STDP. IEEE J Sel Top Quantum Electron. 2020;27:1–9.
|
[92] |
Vivien L, Polzer A, Marris-Morini D, Osmond J, Hartmann JM, Crozat P, et al. Zero-bias 40Gbit/s germanium waveguide photodetector on silicon. Opt Express. 2012;20(2):1096–101. https://doi.org/10.1364/OE.20.001096.
|
[93] |
Radulaski M, Bose R, Tran T, Van Vaerenbergh T, Kielpinski D, Beausoleil RG. Thermally tunable hybrid photonic architecture for nonlinear optical circuits. ACS Photon. 2018;5(11):4323–9. https://doi.org/10.1021/acsphotonics.8b00376.
|