Citation: | Chenlei Li, Ming Zhang, Hongnan Xu, Ying Tan, Yaocheng Shi, Daoxin Dai. Subwavelength silicon photonics for on-chip mode-manipulation[J]. PhotoniX. doi: 10.1186/s43074-021-00032-2 |
[1] |
Agrell E, et al. Roadmap of optical communications. J Opt. 2016;18(6):063002.
|
[2] |
Tkach RW. Scaling optical communications for the next decade and beyond. Bell Labs Tech J. 2010;14:3–9.
|
[3] |
Eldada L. Advances in ROADM technologies and subsystems. Photonics North. International Society for Optics and Photonic. 2005; 5970:597022-597022-10.
|
[4] |
Dong P, et al. Silicon photonic devices and integrated circuits. Nanophotonics. 2014;3:215–28.
|
[5] |
Liang D, Bowers JE. Recent progress in lasers on silicon. Nat Photonics. 2010;4(8):511.
|
[6] |
Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express. 2009;17(19):16646–53.
|
[7] |
Guan X, Wu H, Dai D. Silicon hybrid nanoplasmonics for ultra-dense photonic integration. Front Optoelectronics. 2014;7(3):300–19.
|
[8] |
Dai D, Wu H, Zhang W. Utilization of field enhancement in plasmonic waveguides for subwavelength light-guiding, polarization handling, heating, and optical sensing. Materials. 2015;8(10):6772–91.
|
[9] |
Dai D, et al. Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides. Opt Express. 2011;19(24):23671–82.
|
[10] |
Dai D, et al. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt Express. 2011;19(14):12925–36.
|
[11] |
Cheben P, et al. Subwavelength integrated photonics. Nature. 2018;560(7720):565–72.
|
[12] |
Wang J, Glesk I, Chen LR. Subwavelength grating devices in silicon photonics. Sci Bull. 2016;61(11):879–88.
|
[13] |
Donzella V, et al. Sub-wavelength grating components for integrated optics applications on SOI chips. Opt Express. 2014;22(17):21037–50.
|
[14] |
Bogaerts W, et al. A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires. Opt Express. 2017;15(4):1567–78.
|
[15] |
Barwicz T, et al. Polarization-transparent microphotonic devices in the strong confinement limit. Nat Photonics. 2007;1(1):57–60.
|
[16] |
Dai D, et al. Polarization management for silicon photonic integrated circuits. Laser Photonics Rev. 2013;7(3):303–28.
|
[17] |
Fukuda H, et al. Silicon photonic circuit with polarization diversity. Opt Express. 2008;16(7):4872–80.
|
[18] |
Pfau T, et al. Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s. IEEE Photon Technol Lett. 2007;19(24):1988–90.
|
[19] |
Dong P, et al. Monolithic silicon photonic integrated circuits for compact 100Gb/s coherent optical receivers and transmitters. IEEE J Select Top Quantum Electron. 2014;20(4):150–7.
|
[20] |
Feng L, et al. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. Nat Commun. 2016;7(1):1–7.
|
[21] |
Zhou Z, Bai B, Liu L. Silicon on-chip PDM and WDM technologies via plasmonics and subwavelength grating. IEEE J Select Top Quantum Electron. 2018;25(3):1–13.
|
[22] |
Li C, Liu D, Dai D. Multimode silicon photonics. Nanophotonics. 2018;8(2):227–47.
|
[23] |
Li C, et al. Silicon-based on-chip hybrid (de) multiplexers. SCIENCE CHINA Inf Sci. 2018;61(8):080407.
|
[24] |
Xu H, Shi Y. On-chip silicon TE-pass polarizer based on asymmetrical directional couplers. IEEE Photon Technol Lett. 2017;29(11):861–4.
|
[25] |
Dai D, Wang Z, Julian N, Bowers JE. Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides. Opt Express. 2010;18:27404–15.
|
[26] |
Xiong Y, et al. High ER and broadband silicon TE-pass polarizer using subwavelength grating index engineering. IEEE Photonics J. 2015;7(5):1–7.
|
[27] |
Chi J, et al. High-performance transverse magnetic mode-pass polarizer based on silicon nitride–silicon subwavelength grating waveguide for mid-infrared wavelengths. Appl Phys Express. 2018;11(4):042005.
|
[28] |
Guan X, et al. Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide. Opt Lett. 2014;39(15):4514–7.
|
[29] |
Ni B, Xiao J. Subwavelength-grating-based compact and broadband TE-pass polarizer for slot waveguides on a SOI platform. JOSA B. 2019;36(8):2126–33.
|
[30] |
Zafar H, et al. Compact silicon TE-pass polarizer using adiabatically-bent fully-etched waveguides. Opt Express. 2018;26(24):31850–60.
|
[31] |
Xu H, Dai D, Shi Y. Anisotropic metamaterial-assisted all-silicon polarizer with 415-nm bandwidth. Photonics Res. 2019;7(12):1432–9.
|
[32] |
Bai B, et al. Low loss, compact TM-pass polarizer based on hybrid plasmonic grating. IEEE Photon Technol Lett. 2017;29(7):607–10.
|
[33] |
Abd-Elkader A, et al. Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers. JOSA B. 2019;36(3):652–61.
|
[34] |
Xu Z, Sun X. Ultra-broadband TE-pass polarizer based on hybrid plasmonic-assisted contra-directional couplers. JOSA B. 2020;37(2):251–6.
|
[35] |
Zhang J, Cassan E, Zhang X. Wideband and compact TE-pass/TM-stop polarizer based on a hybrid plasmonic Bragg grating for silicon photonics. J Lightwave Technol. 2014;32(7):1383–6.
|
[36] |
Azzam S, Obayya S. Ultra-compact resonant tunneling-based TE-pass and TM-pass polarizers for SOI platform. Opt Lett. 2015;40(6):1061–4.
|
[37] |
Guan X, et al. Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating. In: Proceedings of Asia Communications and Photonics Conference. Beijing, 2013; ATh4A.
|
[38] |
Guan X, et al. Ultra-compact and ultrabroadband TE-pass polarizer with a silicon hybrid plasmonic waveguide. In: Proceedings of SPIE Photonics West. San Francisco. 2014; 8988
|
[39] |
Alam M, et al. Compact hybrid TM-pass polarizer for silicon-on-insulator platform. Appl Opt. 2011;50(15):2294–8.
|
[40] |
Alam M, et al. Compact and silicon-on insulator-compatible hybrid plasmonic TE-pass polarizer. Opt Lett. 2012;37(1):55–7.
|
[41] |
Huang Y, et al. CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform. Opt Express. 2013;21(10):12790–6.
|
[42] |
Sun X, et al. Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform. Opt Lett. 2012;37(23):4814–6.
|
[43] |
Ni B, Xiao J. Plasmonic-assisted TE-pass polarizer for silicon-based slot waveguides. IEEE Photon Technol Lett. 2018;30(5):463–6.
|
[44] |
Huang T. TE-pass polarizer based on epsilon-near-zero material embedded in a slot waveguide. IEEE Photon Technol Lett. 2016;28(20):2145–8.
|
[45] |
Xu Y, Xiao J. A compact TE-pass polarizer for silicon-based slot waveguides. IEEE Photon Technol Lett. 2015;27(19):2071–4.
|
[46] |
Azzam S, et al. Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform. IEEE Photon TechnolLett. 2014;26(16):1633–6.
|
[47] |
Ni B, Xiao J. A compact silicon-based TE-pass polarizer using three-guide directional couplers. IEEE Photon Technol Lett. 2017;29(19):1631–4.
|
[48] |
Sun X, Mojahedi M, Aitchison J. Hybrid plasmonic waveguide based ultra-low insertion loss transverse electric-pass polarizer. Opt Lett. 2016;41:4020–3.
|
[49] |
Azzam S, Obayya S. Titanium nitride-based CMOS compatible TE-pass and TM-pass plasmonic polarizers. IEEE Photon Technol Lett. 2016;28(3):367–70.
|
[50] |
Alam M, Aitchison J, Mojahedi M. Compact and siliconon-insulator-compatible hybrid plasmonic TE-pass polarizer. Opt Lett. 2012;37:55–7.
|
[51] |
Hameed M, Zaghloul R, Azzam S, Obayya S. Ultrashort hybrid plasmonic transverse electric pass polarizer for siliconon-insulator platform. Opt Eng. 2017;56:017107.
|
[52] |
Ying Z, et al. Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide. IEEE Photon Technol Lett. 2015;27(2):201–4.
|
[53] |
Ng T, Khan M, Al-Jabr A, Ooi B. Analysis of CMOS compatible Cu-based TM-pass optical polarizer. IEEE Photon Technol Lett. 2012;24(9):724–6.
|
[54] |
Xu Y, Xiao J. Design and numerical study of a compact, broadband and low-loss TE-pass polarizer using transparent conducting oxides. Opt Express. 2016;24:15373–82.
|
[55] |
Lu Z, et al. Wideband silicon photonic polarization beam splitter based on point-symmetric cascaded broadband couplers. Opt Express. 2015;23(23):29413–22.
|
[56] |
Dai D, Bowers J. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Opt Express. 2011;19(19):18614–20.
|
[57] |
Wang J, et al. Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler. Opt Lett. 2013;38(1):4–6.
|
[58] |
Chen S, Wu H, Dai D. High extinction-ratio compact polarization beam splitter on silicon. Electron Lett. 2016;52(12):1043–5.
|
[59] |
Hsu C, et al. 8.13 μm in length and CMOS compatible polarization beam splitter based on an asymmetrical directional coupler. Appl Opt. 2016;55(12):3313–8.
|
[60] |
Wu H. and Dai D. Novel high-performance polarization beam splitter on silicon. Asia Communications and Photonics Conference (ACP). 2016; IEEE.
|
[61] |
Wu H, Tan Y, Dai D. Ultra-broadband high-performance polarizing beam splitter on silicon. Opt Express. 2017;25(6):6069–75.
|
[62] |
Wang X, et al. Ultra-small and fabrication-tolerant silicon polarization beam splitter using sharp bent directional coupler. IEEE Photonics J. 2018;10(5):1–7.
|
[63] |
Huang T, et al. A slot-waveguide-based polarization beam splitter assisted by epsilon-near-zero material. Photonics Nanostructures Fundam Appl. 2019;33:42–7.
|
[64] |
Fu P, et al. Optimization for ultrabroadband polarization beam splitters using a genetic algorithm. IEEE Photonics J. 2018;11(1):1–11.
|
[65] |
Li C, Dai D. Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer. Opt Lett. 2017;42(21):4243–6.
|
[66] |
Chia-Chien H. Numerical investigations of an ultra-compact polarization beam splitter based on augmented low-index guiding and subwavelength grating structures. Sci Rep. 2018;8(1):1–11.
|
[67] |
Bai B, Yang F, Zhou Z. Demonstration of an on-chip TE-pass polarizer using a silicon hybrid plasmonic grating. Photonics Res. 2019;7(3):289–93.
|
[68] |
Zhang F, et al. Ultra-broadband and compact polarizing beam splitter in silicon photonics. OSA Continuum. 2020;3(3):560–7.
|
[69] |
Xie Y, et al. Combination of surface plasmon polaritons and subwavelength grating for polarization beam splitting. Plasmonics. 2020;15(1):235–41.
|
[70] |
Xu Z, Lyu T, Sun X. Interleaved subwavelength gratings strip waveguide-based TM pass polarizer on SOI platform. IEEE Photonics J. 2020;12(2):4900110.
|
[71] |
Chen Y, Xiao J. Compact silicon-based polarization beam splitter using directional couplers assisted with subwavelength gratings. Opt Eng. 2020;59(1):017101.
|
[72] |
Xie Y, et al. Bloch supermode interaction for high-performance polarization beam splitting. Opt Eng. 2019;58(9):095102.
|
[73] |
Shen B, et al. An integrated-nanophotonics polarization beamsplitter with 2.4× 2.4 μm2 footprint. Nat Photonics. 2015;9(6):378–82.
|
[74] |
Xu L, et al. Compact broadband polarization beam splitter based on multimode interference coupler with internal photonic crystal for the SOI platform. J Lightwave Technol. 2019;37(4):1231–40.
|
[75] |
Li C, Zhang M, Bowers JE, Dai D. Ultra-broadband polarization beam splitter with silicon subwavelength-grating waveguides. Opt Lett. 2020;45(8):2259–62.
|
[76] |
Kim Y, et al. High-extinction-ratio directional-coupler-type polarization beam splitter with a bridged silicon wire waveguide. Opt Lett. 2018;43(14):3241–4.
|
[77] |
Tian Y, et al. Compact polarization beam splitter with a high ER over S+ C+ L band. Opt Express. 2019;27(2):999–1009.
|
[78] |
Huang Y, et al. Polarization beam splitter based on cascaded step-size multimode interference coupler. Opt Eng. 2013;52(7):077103.
|
[79] |
Zhang Y, et al. High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations. Opt Express. 2016;24(6):6586–93.
|
[80] |
Hu T, et al. A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch. IEEE Photonics J. 2016;8(4):1–9.
|
[81] |
Xu Y, et al. Compact and high ER polarization beam splitter using subwavelength grating couplers. Opt Lett. 2016;41(4):773–6.
|
[82] |
Liu L, Deng Q, Zhou Z. Manipulation of beat length and wavelength dependence of a polarization beam splitter using a subwavelength grating. Opt Lett. 2016;41(21):5126–9.
|
[83] |
Xu H, Dai D, Shi Y. Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials. Laser Photonics Rev. 2019;13(4):1800349.
|
[84] |
Xu D, et al. Silicon photonic integration platform—Have we found the sweet spot? IEEE J Select Top Quantum Electron. 2014;20(4):189–205.
|
[85] |
Keyvaninia S, et al. Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser. Opt Express. 2013;21(3):3784–92.
|
[86] |
Xiao X, et al. High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt Express. 2013;21(4):4116–25.
|
[87] |
Lou F, Dai D, Wosinski L. Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler. Opt Lett. 2012;37(16):3372–4.
|
[88] |
Guan X, et al. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Opt Lett. 2013;38(16):3005–8.
|
[89] |
Guan X, et al. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Opt Lett. 2014;3(2):259–62.
|
[90] |
Wu H, Guan X, and Dai D. Novel silicon polarization beam splitter with a horizontal hybrid nanoplasmonic waveguide. Asia Communications and Photonics Conference. Optical Society of America, 2014.
|
[91] |
Dai D, Wu H. Realization of a compact polarization splitter-rotator on silicon. Opt Lett. 2016;41(10):2346–9.
|
[92] |
Xu H, Shi Y. Ultra-compact and highly efficient polarization rotator utilizing multi-mode waveguides. Opt Lett. 2017;42(4):771–4.
|
[93] |
Liu L, Ding Y, Yvind K, Hvam J. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits. Opt Express. 2011;19(13):12646–51.
|
[94] |
Ding Y, Liu L, Peucheret C, Ou H. Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler. Opt Express. 2012;20(18):20021–7.
|
[95] |
Xu Y, Xiao J. Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially etched subwavelength grating coupler. Sci Rep. 2016;6(1):27949.
|
[96] |
Xu Y, Xiao J. Design of a compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides. Appl Opt. 2016;55(3):611–8.
|
[97] |
Tan K, Huang Y, Lo G-Q, Lee C, Yu C. Compact highly-efficient polarization splitter and rotator based on 90° bends. Opt Express. 2016;24(13):14506–12.
|
[98] |
Xiong Y, Xu D, Schmid J, Cheben P, Janz S, Ye W. Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler. Opt Express. 2014;22(14):17458–65.
|
[99] |
Wang Z, Dai D. Ultrasmall Si-nanowire-based polarization rotator. J Opt Soc Am B. 2008;25(5):747.
|
[100] |
Aamer M, Gutierrez A, Brimont A, Vermeulen D, Roelkens G, Fedeli J, et al. CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section. IEEE Photon Technol Lett. 2012;24(22):2031–4.
|
[101] |
Chen L, Doerr C, Chen Y. Compact polarization rotator on silicon for polarization-diversified circuits. Opt Lett. 2011;36(4):469–71.
|
[102] |
Xu H, Shi Y. Subwavelength-grating-assisted silicon polarization rotator covering all optical communication bands. Opt Express. 2019;27(4):5588–97.
|
[103] |
Wang Y, et al. Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform. IEEE Photonics J. 2016;8(6):1–9.
|
[104] |
Dai D, Tang Y, Bowers J. E. Mode conversion in tapered submicron silicon ridge optical waveguides. Opt Express. 2012;20(12):13425–39.
|
[105] |
Xiong Y, et al. Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance. Opt Lett. 2014;39(24):6931–4.
|
[106] |
Ma M, et al. Sub-wavelength grating-assisted polarization splitter-rotators for silicon-on-insulator platforms. Opt Express. 2019;27(13):17581–91.
|
[107] |
Yin Y, Li Z, Dai D. Ultra-broadband polarization splitter-rotator based on the mode evolution in a dual-core adiabatic taper. J Lightwave Technol. 2017;35(11):2227–33.
|
[108] |
Sacher W, et al. Polarization rotator-splitters in standard active silicon photonics platforms. Opt Express. 2014;22(4):3777–86.
|
[109] |
Dai D. Advanced passive silicon photonic devices with asymmetric waveguide structures. Proc IEEE. 2018;106(12):2117–43.
|
[110] |
Chang W, et al. Inverse design and demonstration of ultracompact silicon polarization rotator. 2019 Optical fiber communications conference and exhibition (OFC). IEEE, 2019.
|
[111] |
Hu T, et al. A polarization splitter and rotator based on a partially etched grating-assisted coupler. IEEE Photon Technol Lett. 2016;28(8):911–4.
|
[112] |
Liu L, Deng Q, Zhou Z. Subwavelength-grating-assisted broadband polarization-independent directional coupler. Opt Lett. 2016;41(7):1648–51.
|
[113] |
Velasco, et al. Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide. Opt Lett. 2012;37(3):365–7.
|
[114] |
Gao L, et al. On-chip plasmonic waveguide optical waveplate. Sci Rep. 2015;5(1):1–6.
|
[115] |
Xie A, et al. Efficient silicon polarization rotator based on mode-hybridization in a double-stair waveguide. Opt Express. 2015;23(4):3960–70.
|
[116] |
Sangsik K, Qi M. Mode-evolution-based polarization rotation and coupling between silicon and hybrid plasmonic waveguides. Sci Rep. 2015;5:18378.
|
[117] |
Bai B, Liu L, Zhou Z. Ultracompact, high ER polarization beam splitter-rotator based on hybrid plasmonic-dielectric directional coupling. Opt Lett. 2017;42(22):4752–5.
|
[118] |
Xiong Y, et al. Robust silicon waveguide polarization rotator with an amorphous silicon overlayer. IEEE Photonics J. 2014;6(2):1–8.
|
[119] |
Chang Y, Yu T. Photonic-quasi-TE-to-hybrid-plasmonic-TM polarization mode converter. J Lightwave Technol. 2015;33(20):4261–7.
|
[120] |
Caspers J, et al. Experimental demonstration of an integrated hybrid plasmonic polarization rotator. Opt Lett. 2013;38(20):4054–7.
|
[121] |
Komatsu M, Saitoh K, and Koshiba M. Design of ultra-small mode-evolution type polarization rotator based on surface plasmon polariton. Integrated Photonics Research, Silicon and Nanophotonics. Optical Society of America, 2012.
|
[122] |
Chen S, Shi Y, He S, Dai D. Low-loss and broadband 2 x 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. Opt Lett. 2016;41(4):836–9.
|
[123] |
Kwong D, Hosseini A, Zhang Y, Chen R. 1 × 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane. Appl Phys Lett. 2011;99(5):051104.
|
[124] |
Chen S, Shi Y, He S, Dai D. Compact eight-channel thermally reconfigurable optical add/drop multiplexers on silicon. IEEE Photon Technol Lett. 2016;28(17):1874–7.
|
[125] |
He M, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics. 2019;13(5):359–64.
|
[126] |
Yamada H, Tao C, Ishida S, Arakawa Y. Optical directional coupler based on Si-wire waveguides. IEEE Photon Technol Lett. 2005;17(3):585–7.
|
[127] |
Soldano L, Pennings E. Optical multi-mode interference devices based on self-imaging: principles and applications. J Lightwave Technol. 1995;13(4):615–27.
|
[128] |
Zhang Y, et al. A compact and low loss Y-junction for submicron silicon waveguide. Opt Express. 2013;21(1):1310–6.
|
[129] |
Yun H, Shi W, Wang Y, Chrostowski L, Jaeger N. 2x2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides. Proc SPIE. 2013;8915:89150V.
|
[130] |
Xu L, et al. Compact high-performance adiabatic 3-dB coupler enabled by subwavelength grating slot in the silicon-on-insulator platform. Opt Express. 2018;26(23):29873–85.
|
[131] |
Yun H, Chrostowski L, Jaeger N. Ultra-broadband 2 x 2 adiabatic 3 dB coupler using subwavelength-grating-assisted silicon-on-insulator strip waveguides. Opt Lett. 2018;43(8):1935–8.
|
[132] |
Takagi A, Jinguji K, Kawachi M. Design and fabrication of broad-band silica-based optical waveguide couplers with asymmetric structure. IEEE J Quantum Electron. 1992;28(4):848–55.
|
[133] |
Morino H, Maruyama T, Iiyama K. Reduction of wavelength dependence of coupling characteristics using Si optical waveguide curved directional coupler. J Lightwave Technol. 2014;32(12):2188–92.
|
[134] |
Hsu S. Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms. J Opt Soc Am B. 2010;27(5):941–7.
|
[135] |
Alam M, Caspers J, Aitchison J, Mojahedi M. Compact low loss and broadband hybrid plasmonic directional coupler. Opt Express. 2013;21(13):16029–34.
|
[136] |
Lu Z, et al. Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control. Opt Express. 2015;23(3):3795–806.
|
[137] |
Gupta R, Chandran S, Das B. Wavelength-independent directional couplers for integrated silicon photonics. J Lightwave Technol. 2017;35(22):4916–23.
|
[138] |
Halir R, et al. Colorless directional coupler with dispersion engineered sub-wavelength structure. Opt Express. 2012;20(12):13470.
|
[139] |
Wang Y, et al. Compact broadband directional couplers using subwavelength gratings. IEEE Photonics J. 2016;8(3):1–8.
|
[140] |
Ye C, Dai D. Ultra-compact broadband 2×2 3dB power splitter using subwavelength-grating-assisted asymmetric directional coupler. IEEE J Lightw Technol. 2020;38:2370–5.
|
[141] |
Lu L, Zhang M, and Liu D. Polarization insensitive 3-dB directional coupler based on sub-wavelength grating structure. Asia Communications and Photonics Conference. Optical Society of America, 2015.
|
[142] |
Benedikovic D, et al. Sub-decibel silicon grating couplers based on L-shaped waveguides and engineered subwavelength metamaterials. Opt Express. 2019;27(18):26239–50.
|
[143] |
Luque G, et al. An ultracompact GRIN-lens-based spot size converter using subwavelength grating metamaterials. Laser Photonics Rev. 2019;13(11):1900172.
|
[144] |
Xu P, et al. SiN x–Si interlayer coupler using a gradient index metamaterial. Opt Lett. 2019;44(5):1230–3.
|
[145] |
Papes M, et al. Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides. Opt Express. 2016;24(5):5026–38.
|
[146] |
Ortega-Moñux A, et al. Disorder effects in subwavelength grating metamaterial waveguides. Opt Express. 2017;25(11):12222–36.
|
[147] |
Barwicz T. An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides. In: Proc. Opt. Fiber Commun. Conf., 2015; Paper Th3F.3.
|
[148] |
Barwicz T, Kamlapurkar S, Martin Y, Bruce R, and Engelmann S. A silicon metamaterial chip-to-chip coupler for photonic flip-chip applications. In Proc. Opt. Fiber Commun. Conf., 2017, Paper Th2A.39.
|
[149] |
Picard M, Painchaud Y, Latrasse C, Larouche C, Pelletier F, and Poulin M. Novel spot-size converter for optical fiber to sub-μm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment. in Proc. Eur. Conf. Opt. Commun. (ECOC), 2015;1–3.
|
[150] |
Zhou W, et al. Subwavelength engineering in silicon photonic devices. IEEE J Select Top Quantum Electron. 2019;25(3):1–13.
|
[151] |
Taillaert D, et al. An out-of-plane grating coupler for efficient buttcoupling between compact planar waveguides and single-mode fibers. IEEE J Quantum Electron. 2002;38(7):949–55.
|
[152] |
Topley R, et al. Locally erasable couplers for optical device testing in silicon on insulator. J Lightwave Technol. 2014;32(12):2248–53.
|
[153] |
Chen X, et al. Post-fabrication phase trimming of Mach–Zehnder interferometers by laser annealing of germanium implanted waveguides. Photon Res. 2017;5(6):578–82.
|
[154] |
Milosevic M, et al. Ion implantation in silicon for trimming the operating wavelength of ring resonators. IEEE J Sel Topics Quantum Electron. 2018;24(4):8200107.
|
[155] |
Li C, et al. Silicon photonics packaging with lateral fiber coupling to apodized grating coupler embedded circuit. Opt Express. 2014;22(20):24235–40.
|
[156] |
Tong Y, Zhou W, Tsang HK. Efficient perfectly vertical grating coupler for multi-core fibers fabricated with 193 nm DUV lithography. Opt Lett. 2018;43(23):5709–12.
|
[157] |
Taillaert D, et al. A compact two-dimensional grating coupler used as a polarization splitter. IEEE Photon Technol Lett. 2003;15(9):1249–51.
|
[158] |
Watanabe T, Ayata M, Koch U, Fedoryshyn Y, Leuthold J. Perpendicular grating coupler based on a blazed antiback-reflection structure. J Lightwave Technol. 2017;35(21):4663–9.
|
[159] |
Chen X, Li C, Tsang HK. Fabrication-tolerant waveguide chirped grating coupler for coupling to a perfectly vertical optical fiber. IEEE Photon Technol Lett. 2008;20(23):1914–6.
|
[160] |
Roelkens G, Van Thourhout D, Baets R. Silicon-on-insulator ultra-compact duplexer based on a diffractive grating structure. Opt Express. 2007;15(16):10091–6.
|
[161] |
Xu L, Chen X, Li C, Tsang HK. Bi-wavelength two-dimensional chirped grating couplers for low cost WDM PON transceivers. Opt Commun. 2011;284(8):2242–4.
|
[162] |
Piggott A, et al. Inverse design and implementation of a wavelength demultiplexing grating coupler. Sci Rep. 2014;4:7210.
|
[163] |
Ding Y, et al. On-chip grating coupler array on the SOI platform for fan-in/fan-out of MCFs with low insertion loss and crosstalk. Opt Express. 2015;23(3):3292–8.
|
[164] |
Chen X, Tsang HK. Nanoholes grating couplers for coupling between silicon-on-insulator waveguides and optical fibers. IEEE Photon J. 2009;1(3):184–90.
|
[165] |
Chen X, Xu K, Cheng Z, Fung C, Tsang HK. Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers. Opt Lett. 2012;37(17):3483–5.
|
[166] |
Cheng Z, Chen X, Wong CY, Xu K, Tsang HK. Apodized focusing subwavelength grating couplers for suspended membrane waveguides. Appl Phys Lett. 2012;101(10):101104.
|
[167] |
Cheng Z, Chen X, Wong CY, Xu K, Tsang HK. Broadband focusing grating couplers for suspended-membrane waveguides. Opt Lett. 2012;37(24):5181–3.
|
[168] |
Cheng Z, et al. Focusing subwavelength grating coupler for midinfrared suspended membrane waveguide. Opt Lett. 2012;37(7):1217–9.
|
[169] |
Cheng Z, Tsang HK. Experimental demonstration of polarization insensitive air-cladding grating couplers for silicon-on-insulator waveguides. Opt Lett. 2014;39(7):2206–9.
|
[170] |
Cheng Z, Chen X, Wong CY, Xu K, Tsang HK. Midinfrared suspended membrane waveguide and ring resonator on siliconon-insulator. IEEE Photon J. 2012;4(5):1510–9.
|
[171] |
Cheben P, et al. Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. Opt Express. 2006;14(11):4695–702.
|
[172] |
Cheben P, et al. Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers. Opt Lett. 2010;35(15):2526–8.
|
[173] |
Cheben P, et al. Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency. Opt Express. 2015;23(17):22553–63.
|
[174] |
Dai D, et al. 10-channel mode (de) multiplexer with dual polarizations. Laser Photonics Rev. 2018;12(1):1700109.
|
[175] |
Uematsu T, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Lightwave Technol. 2012;30(15):2421–6.
|
[176] |
Driscoll J, et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett. 2013;38(11):1854–6.
|
[177] |
Chen W, Wang P, Yang J. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt Express. 2013;21(21):25113–9.
|
[178] |
Frellsen L, et al. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt Express. 2016;24(15):16866–73.
|
[179] |
Xing J, et al. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett. 2013;38(17):3468–70.
|
[180] |
Li C, Dai D. Low-loss and low-crosstalk multi-channel mode (de) multiplexer with ultrathin silicon waveguides. Opt Lett. 2017;42(12):2370–3.
|
[181] |
Guo D, Chu T. Silicon mode (de) multiplexers with parameters optimized using shortcuts to adiabaticity. Opt Express. 2017;25(8):9160–70.
|
[182] |
Sun C, et al. Silicon mode multiplexer processing dual-path mode-division multiplexing signals. Opt Lett. 2016;41(23):5511–4.
|
[183] |
Greenberg M, Orenstein M. Multimode add-drop multiplexing by adiabatic linearly tapered coupling. Opt Express. 2005;13(23):9381–7.
|
[184] |
Ding Y, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt Express. 2013;21(8):10376–82.
|
[185] |
Dai D, Wang J, Shi Y. Silicon mode (de) multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett. 2013;38(9):1422–4.
|
[186] |
Qiu H, et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt Express. 2013;21:17904–11.
|
[187] |
He Y, Zhang Y, Zhu Q, An S, et al. Silicon high-order mode (De)multiplexer on single polarization. IEEE/OSA J Lightw Technol. 2018;36(24):5746–53.
|
[188] |
Mehrabi K, Zarifkar A. Ultracompact and ultrabroadband mode division multiplexer based on an Au nanocube array assisted directional coupler. Appl Opt. 2020;59(5):1286–92.
|
[189] |
Jiang W, et al. On-chip silicon dual-mode multiplexer via a subwavelength grating-based directional coupler and a mode blocker. Appl Opt. 2019;58(33):9290–6.
|
[190] |
Dave U, and Lipson M. Efficient conversion to very high order modes in silicon waveguides. CLEO: Science and Innovations. Optical Society of America, 2019.
|
[191] |
Li C, Ye C, and Dai D. SWG-assisted multimode add-drop multiplexer. (to be submitted)
|
[192] |
Jiang W, et al. Ultrabroadband and fabrication-tolerant mode (de) multiplexer using subwavelength structure. JOSA B. 2019;36(11):3125–32.
|
[193] |
Jiang W, Wang X. Ultra-broadband mode splitter based on phase controlling of bridged subwavelength grating. J Lightwave Technol. 2020;99:1–1.
|
[194] |
Park J, Yeo D, Shin S. Variable optical mode generator in a multimode waveguide. IEEE Photon Technol Lett. 2006;18(20):2084–6.
|
[195] |
Huang Y, Xu G, Ho S. An ultracompact optical mode order converter. IEEE Photon Technol Lett. 2006;18(21):2281–3.
|
[196] |
Chen D, et al. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers. Opt Express. 2015;23:11152–9.
|
[197] |
Molesky S, et al. Inverse design in nanophotonics. Nat Photonics. 2018;12(11):659.
|
[198] |
Liu V, et al. Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect. Opt Express. 2012;20(27):28388–97.
|
[199] |
Lu J, Vuckovic J. Nanophotonic computational design. Opt Express. 2013;21(11):13351–67.
|
[200] |
Shen B, Polson R, Menon R. Integrated digital metamaterials enable ultra-compact optical diodes. Opt Express. 2015;23(8):10847–55.
|
[201] |
Yu Z, Cui H, Sun X. Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt Lett. 2017;42(16):3093–6.
|
[202] |
Frandsen L, et al. Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material. Opt Express. 2014;22(7):8525–32.
|
[203] |
Frellsen L, Ding Y, Sigmund O, and Frandsen L. Topology-optimized mode converter in a silicon-on-insulator photonic wire waveguide. CLEO: Science and Innovations. Optical Society of America, 2016; STh3E. 4.
|
[204] |
Jia H, et al. Inverse-design and demonstration of ultracompact silicon meta-structure mode exchange device. ACS Photon. 2018;5:1833–8.
|
[205] |
Ohana D, et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett. 2016;16(12):7956–61.
|
[206] |
Li Z, et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat Nanotechnol. 2017;12(7):675.
|
[207] |
Luque-González J, et al. Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides. Opt Lett. 2018;43(19):4691–4.
|
[208] |
Yao C, et al. Multi-mode conversion via two-dimensional refractive-index perturbation on a silicon waveguide. arXiv preprint arXiv. 2019; 1911.10786.
|
[209] |
Wang T, et al. Ultra-compact reflective mode converter based on a silicon subwavelength structure. Appl Opt. 2020;59(9):2754–8.
|
[210] |
Cheng Z, et al. Sub-wavelength grating assisted mode order converter on the SOI substrate. Opt Express. 2019;27(23):34434–41.
|
[211] |
González-Andrade D, et al. Ultra-broadband mode converter and multiplexer based on sub-wavelength structures. IEEE Photonics J. 2018;10(2):1–10.
|
[212] |
Chen R, et al. Ultra-compact hybrid plasmonic mode convertor based on unidirectional eigenmode expansion. Opt Lett. 2020;45(4):803–6.
|
[213] |
Wang H, Zhang Y, He Y, Zhu Q, Sun L, Su Y. Compact silicon waveguide mode converter employing dielectric metasurface structure. Adv Opt Mater. 2019;7(4):1801191.
|
[214] |
Guo J, et al. Extremely compact guided-mode exchangers on silicon. Laser Photonics Rev. 2020;202000058.
|
[215] |
Luo Y, Yu Y, Ye M, Sun C, Zhang X. Integrated dual-mode 3 dB power coupler based on tapered directional coupler. Sci Rep. 2016;6:23516.
|
[216] |
Xu H, Shi Y. Ultra-broadband dual-mode 3 dB power splitter based on a Y-junction assisted with mode converters. Opt Lett. 2016;41(21):5047–50.
|
[217] |
Han L, Kuo B, Alic N, Radic S. Ultra-broadband multimode 3dB optical power splitter using an adiabatic coupler and a Y-branch. Opt Express. 2018;26(11):14800–9.
|
[218] |
Chang W, et al. Inverse design and demonstration of an ultracompact broadband dual-mode 3 dB power splitter. Opt Express. 2018;26(18):24135–44.
|
[219] |
Xie H, et al. An ultra-compact 3-dB power splitter for three modes based on pixelated meta-structure. IEEE Photon Technol Lett. 2020;32(6):341–4.
|
[220] |
Ye C, Dai D. Broadband dual-mode 2×2 3 dB power splitter based on multimode interference couplers with shallowly etched subwavelength gratings. Appl Opt. 2020;59:7308–12.
|
[221] |
Erol A, Sözüer H. High transmission through a 90° bend in a polarization-independent single-mode photonic crystal waveguide. Opt Express. 2015;23(25):32690–5.
|
[222] |
Shen B, Polson R, Menon R. Metamaterial-waveguide bends with effective bend radius< λ 0/2. Opt Lett. 2015;40(24):5750–3.
|
[223] |
Fujisawa T, et al. Low-loss, compact, and fabrication-tolerant Si-wire 90° waveguide bend using clothoid and normal curves for large scale PICs. Opt Express. 2017;25(8):9150–9.
|
[224] |
Cherchi M, et al. Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform. Opt Express. 2013;21(15):17814–23.
|
[225] |
Yuanyuan C, et al. Analysis on influencing factors of bend loss of silicon-on-insulator waveguides. J Semicond. 2005;26:216.
|
[226] |
Gabrielli L, et al. On-chip transformation optics for multimode waveguide bends. Nat Commun. 2012;3:1217.
|
[227] |
Dai D. Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects. Opt Express. 2014;22:27524–34.
|
[228] |
Dai D, Wang J, He S. Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects. Prog Electromagn Res. 2013;143:773–819.
|
[229] |
Wu X, et al. Low crosstalk bent multimode waveguide for on-chip mode-division multiplexing interconnects. //CLEO: QELS_Fundamental Science. Optical Society of America, 2018; JW2A. 66.
|
[230] |
Jiang X, Wu H, Dai D. Low-loss and low-crosstalk multimode waveguide bend on silicon. Opt Express. 2018;26:17680–9.
|
[231] |
Sun C, et al. A novel sharply bent silicon multimode waveguide with ultrahigh mode ER. Optical Fiber Communications Conference and Exhibition. IEEE, 2016.
|
[232] |
Sun C, Yu Y, Chen G, Zhang X. Ultra-compact bent multimode silicon waveguide with ultralow inter-mode crosstalk. Opt Lett. 2017;42(15):3004–7.
|
[233] |
Xu H, Shi Y. Ultra-sharp multi-mode waveguide bending assisted with metamaterial-based mode converters. Laser Photonics Rev. 2018;12:1700240.
|
[234] |
Teng M, et al. A 3-micron-radius bend for SOI TE0/TE1 multiplexing //CLEO: applications and technology. Optical Society of America, 2018: JW2A. 13.
|
[235] |
Chang W, et al. Ultra-compact silicon multi-mode waveguide bend based on subwavelength asymmetric Y-junction. Optical Fiber Communication Conference. Optical Society of America 2018: Tu3A. 1
|
[236] |
Liu Y, et al. Very sharp adiabatic bends based on an inverse design. Opt Lett. 2018;43(11):2482–5.
|
[237] |
Wu H, et al. Ultra-sharp multimode waveguide bends with subwavelength gratings. Laser Photonics Rev. 2019;13(2):1800119.
|
[238] |
Xie H, et al. Demonstration of an ultra-compact bend for four modes based on pixelated meta-structure. Optical Fiber Communication Conference. Optical Society of America, 2020.
|
[239] |
Wang Y, Dai D. Ultra-sharp multimode waveguide bends with dual polarizations. J Lightwave Technol. 2020;38(15):3994–9.
|
[240] |
Chen H, Poon A. Low-loss multimode-interference-based crossings for silicon wire waveguides. IEEE Photon Technol Lett. 2006;18(21):2260–2.
|
[241] |
Bogaerts W, et al. Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides. Opt Lett. 2007;32(19):2801–3.
|
[242] |
Kim S-H, et al. Low-crosstalk waveguide crossing based on 1×1 MMI structure of silicon-wire waveguide. 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR). IEEE, 2013.
|
[243] |
Liu Y, et al. Ultra-low-loss CMOS-compatible waveguide crossing arrays based on multimode Bloch waves and imaginary coupling. Opt Lett. 2014;39(2):335–8.
|
[244] |
Zhang Y, et al. Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers. Opt Lett. 2013;38(18):3608–11.
|
[245] |
Bock P, et al. Subwavelength grating crossings for silicon wire waveguides. Opt Express. 2010;18(15):16146–55.
|
[246] |
Sun C, Yu Y, Zhang X. Ultra-compact waveguide crossing for a mode-division multiplexing optical network. Opt Lett. 2017;42(23):4913–6.
|
[247] |
Chang W, et al. An ultracompact multimode waveguide crossing based on subwavelength asymmetric Y-junction. IEEE Photonics J. 2018;10(4):1–8.
|
[248] |
Chang W, et al. Ultracompact dual-mode waveguide crossing based on subwavelength multimode-interference couplers. Photonics Res. 2018;6(7):660–5.
|
[249] |
Xu H, Shi Y. Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers. Opt Lett. 2016;41(22):5381–4.
|
[250] |
Chang W, Zhang M. Silicon-based multimode waveguide crossings. J Phys Photonics. 2020;2(2):022002.
|
[251] |
Xu H, Shi Y. Metamaterial-based Maxwell’s fisheye lens for multimode waveguide crossing. Laser Photonics Rev. 2018;12(10):1800094.
|
[252] |
Chen LR, et al. Subwavelength grating waveguide devices for telecommunications applications. IEEE J Sel Top Quant Electron. 2018;25(3):8200111.
|
[253] |
Wang J, Glesk I, Chen L. Subwavelength grating Bragg grating filters in silicon-on-insulator. IET Electron Lett. 2015;51(9):712–3.
|
[254] |
Pérez-Galacho D, et al. Optical pump-rejection filter based on silicon sub-wavelength engineered photonic structures. Opt Lett. 2017;42(8):1468–71.
|
[255] |
Sumi R, et al. Ultra-broadband add-drop filter/switch circuit using subwavelength grating waveguides. IEEE J Select Top Quantum Electron. 2018;25(3):1–11.
|
[256] |
Chen J, Shi Y. Flat-top CWDM (De) multiplexers based on contra-directional couplers with subwavelength gratings. IEEE Photon Technol Lett. 2019;31(24):2003–6.
|
[257] |
Ma K, Han S, Long Z, et al. Optical forces in silicon subwavelength-grating waveguides. Opt Express. 2017;25(25):30876.
|
[258] |
Huang L, et al. Improving the detection limit for on-chip photonic sensors based on subwavelength grating racetrack resonators. Opt Express. 2017;25(9):10527–35.
|
[259] |
Zhang L, Dai D. Silicon subwavelength-grating microdisks for optical sensing. IEEE Photon Technol Lett. 2019;31(15):1209–12.
|
[260] |
Flueckiger J, et al. Subwavelength grating for enhanced ring resonator biosensor. Opt Express. 2016;24(14):15672–86.
|
[261] |
Pan Z, et al. High-speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator. Laser Photonics Rev. 2018;12(6):1700300.
|
[262] |
Abdelatty M, Swillam MA. Hybrid plasmonic electro-optical absorption modulator based on phase change characteristics of vanadium-dioxide. J Nanophotonics. 2019;13(4):046014.
|
[263] |
Jean P, et al. Slow light in subwavelength grating waveguides. IEEE J Select Top Quantum Electron. 2019;26(2):8200108.
|
[264] |
Gervais A, et al. Tunable slow-light in silicon photonic subwavelength grating waveguides. 2019 IEEE 16th International Conference on Group IV Photonics (GFP). IEEE, 2019.
|
[265] |
Wang J, et al. Subwavelength grating enabled on-chip ultra-compact optical true time delay line. Sci Rep. 2016;6:30235.
|
[266] |
Li T, and Zou Y. Coupling condition engineered subwavelength grating waveguide ring resonator for sensitivity enhancement. Integrated Optics: Devices, Materials, and Technologies XXIV. Vol. 11283. International Society for Optics and Photonics, 2020.
|
[267] |
Glesk I, et al. All-optical switching using nonlinear subwavelength Mach-Zehnder on silicon. Opt Express. 2011;19(15):14031–9.
|
[268] |
Babaei M, et al. Compact and broadband 2× 2 optical switch based on hybrid plasmonic waveguides and curved directional couplers. Appl Opt. 2020;59(4):975–84.
|
[269] |
Glesk I, et al. Picosecond all-optical switching using nonlinear Mach–Zehnder with silicon subwavelength grating and photonic wire arms. Opt Quant Electron. 2012;44(12-13):613–21.
|
[270] |
Bock P, et al. Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator. Laser Photonics Rev. 2013;7(6):L67–70.
|
[271] |
González-Andrade D, et al. Ultra-broadband nanophotonic phase shifter based on subwavelength metamaterial waveguides. Photonics Res. 2020;8(3):359–67.
|