Turn off MathJax
Article Contents
Yan Li, Shuyi Chen, Haowen Liang, Xiuying Ren, Lingcong Luo, Yuye Ling, Shuxin Liu, Yikai Su, Shin-Tson Wu. Ultracompact multifunctional metalens visor for augmented reality displays[J]. PhotoniX. doi: 10.1186/s43074-022-00075-z
Citation: Yan Li, Shuyi Chen, Haowen Liang, Xiuying Ren, Lingcong Luo, Yuye Ling, Shuxin Liu, Yikai Su, Shin-Tson Wu. Ultracompact multifunctional metalens visor for augmented reality displays[J]. PhotoniX. doi: 10.1186/s43074-022-00075-z

Ultracompact multifunctional metalens visor for augmented reality displays

doi: 10.1186/s43074-022-00075-z
Funds:  The authors thank Jianghao Xiong and Kun Yin for helpful discussions. They are both from University of Central Florida.
  • Received Date: 2022-07-15
  • Accepted Date: 2022-11-14
  • Rev Recd Date: 2022-11-01
  • Available Online: 2022-11-29
  • Virtual reality (VR) and augmented reality (AR) have found widespread applications in education, engineering, healthcare, and entertainment. However, these near-eye displays are often bulky and heavy, and thus are not suitable for long-term wearing. Metalenses, with an ultra-thin formfactor, subwavelength modulation scale, and high modulation flexibility, are promising candidates to replace the conventional optics in AR display systems. In this work, we proposed and fabricated a novel reflective dielectric metalens-visor based on Pancharatnam-Berry phase with see-through capability. It achieves diffraction-limited focusing behavior for the reflected red light, while keeping a good transmission spectrum in the visible region. Hence, this single piece metalens-visor can perform the function of two integrated elements simultaneously: an eyepiece and an optical combiner, which in turn greatly reduces the weight and the size of an AR display. We have implemented a proof-of-concept AR display system employing the metalens-visor, and experimentally demonstrated color AR images with good image quality. This work reveals the great potential of multi-functional metasurface devices which enables optical integration in interdisciplinary applications including wearable displays, biological imaging, and aeronautic optical instruments.
  • loading
  • [1]
    Xiong J, Hsiang E-L, He Z, Zhan T, Wu S-T. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl. 2021;10:216.
    [2]
    Li Z, Lin P, Huang Y-W, Park J-S, Chen WT, Shi Z, et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci Adv. 2021;7:eabe4458.
    [3]
    Xiong J, Wu S-T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight. 2021;1:3.
    [4]
    Zhan T, Xiong J, Zou J, Wu S-T. Multifocal displays: review and prospect. PhotoniX. 2020;1:10.
    [5]
    Wang D, Liu C, Shen C, Xing Y, Wang Q-H. Holographic capture and projection system of real object based on tunable zoom lens. PhotoniX. 2020;1:6.
    [6]
    Nikolov DK, Cheng F, Ding L, Bauer A, Vamivakas AN, Rolland JP. See-through reflective metasurface diffraction grating. Opt Mater Express. 2019;9:4070–80.
    [7]
    Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT, Azad AK, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science. 2013;340:1304–7.
    [8]
    Wong AM, Eleftheriades GV. Perfect anomalous reflection with a bipartite Huygens’ metasurface. Phys Rev X. 2018;8:011036.
    [9]
    Sell D, Yang J, Doshay S, Yang R, Fan JA. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett. 2017;17:3752–7.
    [10]
    Khorasaninejad M, Zhu AY, Roques-Carmes C, Chen WT, Oh J, Mishra I, et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 2016;16:7229–34.
    [11]
    Wang Q, Zhang X, Xu Y, Tian Z, Gu J, Yue W, et al. A broadband metasurface-based terahertz flat-lens array. Adv Opt Mater. 2015;3:779–85.
    [12]
    Lin D, Fan P, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science. 2014;345:298–302.
    [13]
    Wang B, Dong F, Yang D, Song Z, Xu L, Chu W, et al. Polarization-controlled color-tunable holograms with dielectric metasurfaces. Optica. 2017;4:1368–71.
    [14]
    Wang L, Kruk S, Tang H, Li T, Kravchenko I, Neshev DN, et al. Grayscale transparent metasurface holograms. Optica. 2016;3:1504–5.
    [15]
    Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, et al. Silicon multi-meta-holograms for the broadband visible light. Laser Photonics Rev. 2016;10:500–9.
    [16]
    Zhao R, Huang L, Wang Y. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX. 2020;1:20.
    [17]
    Zhang S, Huang L, Li X, Zhao R, Wei Q, Zhou H, et al. Dynamic display of full-stokes vectorial holography based on metasurfaces. ACS Photonics. 2021;8:1746–53.
    [18]
    Wei Q, Sain B, Wang Y, Reineke B, Li X, Huang L, et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces. Nano Lett. 2019;19:8964–71.
    [19]
    Zhao R, Sain B, Wei Q, Tang C, Li X, Weiss T, et al. Multichannel vectorial holographic display and encryption. Light Sci Appl. 2018;7:95.
    [20]
    Genevet P, Yu N, Aieta F, Lin J, Kats MA, Blanchard R, et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl Phys Lett. 2012;100:013101.
    [21]
    Luo W, Sun S, Xu H-X, He Q, Zhou L. Transmissive ultrathin Pancharatnam-Berry metasurfaces with nearly 100% efficiency. Phys Rev Appl. 2017;7:044033.
    [22]
    Sun J, Wang X, Xu T, Kudyshev ZA, Cartwright AN, Litchinitser NM. Spinning light on the nanoscale. Nano Lett. 2014;14:2726–9.
    [23]
    Avayu O, Almeida E, Prior Y, Ellenbogen T. Composite functional metasurfaces for multispectral achromatic optics. Nat Commun. 2017;8:14992.
    [24]
    Lee G-Y, Hong J-Y, Hwang S, Moon S, Kang H, Jeon S, et al. Metasurface eyepiece for augmented reality. Nat Commun. 2018;9:4562.
    [25]
    Fan Z-B, Qiu H-Y, Zhang H-L, Pang X-N, Zhou L-D, Liu L, et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci Appl. 2019;8:67.
    [26]
    Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352:1190–4.
    [27]
    Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, et al. Imaging based on metalenses. PhotoniX. 2020;1:2.
    [28]
    Wang S, Wu PC, Su V-C, Lai Y-C, Chen M-K, Kuo HY, et al. A broadband achromatic metalens in the visible. Nat Nanotechnol. 2018;13:227–32.
    [29]
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7:442–53.
    [30]
    Khorasaninejad M, Chen W-T, Oh J, Capasso F. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett. 2016;16:3732–7.
    [31]
    Zhu AY, Chen W-T, Khorasaninejad M, Oh J, Zaidi A, Mishra I, et al. Ultra-compact visible chiral spectrometer with meta-lenses. APL Photonics. 2017;2:036103.
    [32]
    Tseng ML, Hsiao HH, Chu CH, Chen MK, Sun G, Liu AQ, et al. Metalenses: advances and applications. Adv Opt Mater. 2018;6:1800554.
    [33]
    Wang C, Yu Z, Zhang Q, Sun Y, Tao C, Wu F, et al. Metalens eyepiece for 3D holographic near-eye display. Nanomaterials. 2021;11:1920.
    [34]
    Li Z, Pestourie R, Park J-S, Huang Y-W, Johnson SG, Capasso F. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat Commun. 2022;13:2409.
    [35]
    Hong C, Colburn S, Majumdar A. Flat metaform near-eye visor. Appl Opt. 2017;56:8822–7.
    [36]
    Bayati E, Wolfram A, Colburn S, Huang L, Majumdar A. Design of achromatic augmented reality visors based on composite metasurfaces. Appl Opt. 2021;60:844–50.
    [37]
    Avayu O, Ditcovski R, Ellenbogen T. Ultrathin full color visor with large field of view based on multilayered metasurface design. Proc SPIE Int Soc Opt Photonics. 2018;10676:1067612.
    [38]
    Nikolov DK, Bauer A, Cheng F, Kato H, Vamivakas AN, Rolland JP. Metaform optics: bridging nanophotonics and freeform optics. Sci Adv. 2021;7:eabe5112.
    [39]
    Song J-H, van de Groep J, Kim SJ, Brongersma ML. Non-local metasurfaces for spectrally decoupled wavefront manipulation and eye tracking. Nat Nanotechnol. 2021;16:1224–30.
    [40]
    Pancharatnam S. Generalized theory of interference and its applications. Proc Indian Acad Sci Sect A. 1956;44:398–417.
    [41]
    Berry MV. The adiabatic phase and Pancharatnam's phase for polarized light. J Mod Opt. 1987;34:1401–7.
    [42]
    Liang H, Lin Q, Xie X, Sun Q, Wang Y, Zhou L, et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett. 2018;18:4460–6.
    [43]
    Aieta F, Kats MA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science. 2015;347:1342–5.
    [44]
    Shrestha S, Overvig AC, Lu M, Stein A, Yu N. Broadband achromatic dielectric metalenses. Light Sci Appl. 2018;7:85.
    [45]
    Zhou Z, Li J, Su R, Yao B, Fang H, Li K, et al. Efficient silicon metasurfaces for visible light. ACS Photonics. 2017;4:544–51.
    [46]
    Sun Q, Liang H, Zhang J, Feng W, Martins ER, Krauss TF, et al. Highly efficient air-mode silicon Metasurfaces for visible light operation embedded in a protective silica layer. Adv Opt Mater. 2021;9:2002209.
    [47]
    Chen WT, Zhu AY, Capasso F. Flat optics with dispersion-engineered metasurfaces. Nat Rev Mater. 2020;5:604–20.
    [48]
    Sell D, Yang J, Doshay S, Zhang K, Fan JA. Visible light metasurfaces based on single-crystal silicon. ACS Photonics. 2016;3:1919–25.
    [49]
    Feng W, Zhang J, Wu Q, Martins A, Sun Q, Liu Z, et al. RGB achromatic Metalens doublet for digital imaging. Nano Lett. 2022;22:3969–75.
    [50]
    Cheng D, Wang Q, Liu Y, Chen H, Ni D, Wang X, et al. Design and manufacture AR head-mounted displays: a review and outlook. Light Adv Manuf. 2021;2:350–69.
    [51]
    Jang C, Bang K, Moon S, Kim J, Lee S, Lee B. Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Trans Graph. 2017;36:190.
    [52]
    Westheimer G. The maxwellian view. Vis Res. 1966;6:669–82.
    [53]
    Hua H. Enabling focus cues in head-mounted displays. Proc IEEE. 2017;105:805–24.
    [54]
    Takaki Y, Fujimoto N. Flexible retinal image formation by holographic Maxwellian-view display. Opt Express. 2018;26:22985–99.
    [55]
    Zhou P, Li Y, Liu S, Su Y. Compact design for optical-see-through holographic displays employing holographic optical elements. Opt Express. 2018;26:22866–76.
    [56]
    Li G, Lee D, Jeong Y, Cho J, Lee B. Holographic display for see-through augmented reality using mirror-lens holographic optical element. Opt Lett. 2016;41:2486–9.
    [57]
    Hua J, Hua E, Zhou F, Shi J, Wang C, Duan H, et al. Foveated glasses-free 3D display with ultrawide field of view via a large-scale 2D-metagrating complex. Light Sci Appl. 2021;10:213.
    [58]
    Wang L, Li Y, Liu S, Su Y, Teng D. Large depth of range Maxwellian-viewing SMV near-eye display based on a Pancharatnam-Berry optical element. IEEE Photonics J. 2021;14:7001607.
    [59]
    Liu S, Li Y, Zhou P, Chen Q, Li S, Liu Y, et al. Full-color multi-plane optical see-through head-mounted display for augmented reality applications. J Soc Inf Disp. 2018;26:687–93.
    [60]
    Chen Q, Peng Z, Li Y, Liu S, Zhou P, Gu J, et al. Multi-plane augmented reality display based on cholesteric liquid crystal reflective films. Opt Express. 2019;27:12039–47.
    [61]
    Kim S-B, Park J-H. Optical see-through Maxwellian near-to-eye display with an enlarged eyebox. Opt Lett. 2018;43:767–70.
    [62]
    Lin T, Zhan T, Zou J, Fan F, Wu S-T. Maxwellian near-eye display with an expanded eyebox. Opt Express. 2020;28:38616–25.
    [63]
    Park J-S, Zhang S, She A, Chen WT, Lin P, Yousef KM, et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 2019;19:8673–82.
    [64]
    Zhan T, Zou J, Xiong J, Liu X, Chen H, Yang J, et al. Practical chromatic aberration correction in virtual reality displays enabled by cost-effective ultra-broadband liquid crystal polymer lenses. Adv Opt Mater. 2020;8:1901360.
    [65]
    Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol. 2018;13:220–6.
    [66]
    Hsiao HH, Chen YH, Lin RJ, Wu PC, Wang S, Chen BH, et al. Integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation. Adv Opt Mater. 2018;6:1800031.
    [67]
    Wang S, Wu PC, Su V-C, Lai Y-C, Hung Chu C, Chen J-W, et al. Broadband achromatic optical metasurface devices. Nat Commun. 2017;8:187.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (209) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return