留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-speed visible light communication systems based on Si-substrate LEDs with multiple superlattice interlayers

Fangchen Hu Shouqing Chen Yuyi Zhang Guoqiang Li Peng Zou Junwen Zhang Chao Shen Xiaolei Zhang Jian Hu Jianli Zhang Zhixue He Shaohua Yu Fengyi Jiang Nan Chi

Fangchen Hu, Shouqing Chen, Yuyi Zhang, Guoqiang Li, Peng Zou, Junwen Zhang, Chao Shen, Xiaolei Zhang, Jian Hu, Jianli Zhang, Zhixue He, Shaohua Yu, Fengyi Jiang, Nan Chi. High-speed visible light communication systems based on Si-substrate LEDs with multiple superlattice interlayers[J]. PhotoniX. doi: 10.1186/s43074-021-00039-9
引用本文: Fangchen Hu, Shouqing Chen, Yuyi Zhang, Guoqiang Li, Peng Zou, Junwen Zhang, Chao Shen, Xiaolei Zhang, Jian Hu, Jianli Zhang, Zhixue He, Shaohua Yu, Fengyi Jiang, Nan Chi. High-speed visible light communication systems based on Si-substrate LEDs with multiple superlattice interlayers[J]. PhotoniX. doi: 10.1186/s43074-021-00039-9
Fangchen Hu, Shouqing Chen, Yuyi Zhang, Guoqiang Li, Peng Zou, Junwen Zhang, Chao Shen, Xiaolei Zhang, Jian Hu, Jianli Zhang, Zhixue He, Shaohua Yu, Fengyi Jiang, Nan Chi. High-speed visible light communication systems based on Si-substrate LEDs with multiple superlattice interlayers[J]. PhotoniX. doi: 10.1186/s43074-021-00039-9
Citation: Fangchen Hu, Shouqing Chen, Yuyi Zhang, Guoqiang Li, Peng Zou, Junwen Zhang, Chao Shen, Xiaolei Zhang, Jian Hu, Jianli Zhang, Zhixue He, Shaohua Yu, Fengyi Jiang, Nan Chi. High-speed visible light communication systems based on Si-substrate LEDs with multiple superlattice interlayers[J]. PhotoniX. doi: 10.1186/s43074-021-00039-9

High-speed visible light communication systems based on Si-substrate LEDs with multiple superlattice interlayers

doi: 10.1186/s43074-021-00039-9
基金项目: 

This work was partially supported by the NSFC project (No.61925104, No.62031011), Peng Cheng Laboratory project (No.PCL2021A14) and Fudan University-CIOMP Joint Fund.

High-speed visible light communication systems based on Si-substrate LEDs with multiple superlattice interlayers

Funds: 

This work was partially supported by the NSFC project (No.61925104, No.62031011), Peng Cheng Laboratory project (No.PCL2021A14) and Fudan University-CIOMP Joint Fund.

  • 摘要: High-speed visible light communication (VLC), as a cutting-edge supplementary solution in 6G to traditional radio-frequency communication, is expected to address the tension between continuously increased demand of capacity and currently limited supply of radio-frequency spectrum resource. The main driver behind the high-speed VLC is the presence of light emitting diode (LED) which not only offers energy-efficient lighting, but also provides a cost-efficient alternative to the VLC transmitter with superior modulation potential. Particularly, the InGaN/GaN LED grown on Si substrate is a promising VLC transmitter to simultaneously realize effective communication and illumination by virtue of beyond 10-Gbps communication capacity and Watt-level output optical power. In previous parameter optimization of Si-substrate LED, the superlattice interlayer (SL), especially its period number, is reported to be the key factor to improve the lighting performance by enhancing the wall-plug efficiency, but few efforts were made to investigate the influence of SLs on VLC performance. Therefore, to optimize the VLC performance of Si-substrate LEDs, we for the first time investigated the impact of the SL period number on VLC system through experiments and theoretical derivation. The results show that more SL period number is related to higher signal-to-noise ratio (SNR) via improving the wall-plug efficiency. In addition, by using Levin-Campello bit and power loading technology, we achieved a record-breaking data rate of 3.37 Gbps over 1.2-m free-space VLC link under given optimal SL period number, which, to the best of our knowledge, is the highest data rate for a Si-substrate LED-based VLC system.
      关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Calvanese Strinati E, Barbarossa S, Gonzalez-Jimenez JL, Ktenas D, Cassiau N, Maret L, et al. 6G: the next frontier: from holographic messaging to artificial intelligence using subterahertz and visible light communication. IEEE Veh Technol Mag. 2019;14(3):42–50. https://doi.org/10.1109/MVT.2019.2921162.
    [2] Chi N, Zhou Y, Wei Y, Hu F. Visible light communication in 6G: advances, challenges, and prospects. IEEE Veh Technol Mag. 2020;15(4):93–102. https://doi.org/10.1109/MVT.2020.3017153.
    [3] Chi N, Zhou Y, Liang S, Wang F, Li J, Wang Y. Enabling Technologies for High-Speed Visible Light Communication Employing CAP modulation. J Lightwave Technol. 2018;36(2):510–8. https://doi.org/10.1109/JLT.2017.2783906.
    [4] Chi N, Haas H, Kavehrad M, Little TDC, Huang X. Visible light communications: demand factors, benefits and opportunities [guest editorial]. IEEE Wirel Commun. 2015;22(2):5–7. https://doi.org/10.1109/MWC.2015.7096278.
    [5] De Vries JP, Simić L, Achtzehn A, Petrova M, Mähönen P. The Wi-fi “congestion crisis”: regulatory criteria for assessing spectrum congestion claims. Telecommun Policy. 2014;38(8–9):838–50. https://doi.org/10.1016/j.telpol.2014.06.005.
    [6] Wang Y, Wang Y, Chi N, Yu J, Shang H. Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED. Opt Express. 2013;21(1):1203–8. https://doi.org/10.1364/OE.21.001203.
    [7] Huang X, Wang Z, Shi J, Wang Y, Chi N. 1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver. Opt Express. 2015;23(17):22034–42. https://doi.org/10.1364/OE.23.022034.
    [8] Bian R, Tavakkolnia I, Haas H. 15.73 Gb/s visible light communication with off-the-shelf LEDs. J Lightwave Technol. 2019;37(10):2418–24. https://doi.org/10.1109/JLT.2019.2906464.
    [9] Zhou Y, Zhu X, Hu F, Shi J, Wang F, Zou P, et al. Common-anode LED on a Si substrate for beyond 15 Gbit/s underwater visible light communication. Photonics Res. 2019;7(9):1019–29. https://doi.org/10.1364/PRJ.7.001019.
    [10] Shin H, Jeon K, Jang Y, Gang M, Choi M, Park W, et al. Comparison of the microstructural characterizations of GaN layers grown on Si (111) and on sapphire. J Korean Phys Soc. 2013;63(8):1621–4. https://doi.org/10.3938/jkps.63.1621.
    [11] Härle V, Hahn B, Lugauer H J, et al. GaN based LEDs and lasers on SiC[J]. Phys Status Solidi A. 2000;180(1):5–13.
    [12] Xiong C, Jiang F, Fang W, Wang L, Liu H, Mo C. Different properties of GaN-based LED grown on Si (111) and transferred onto new substrate. Sci China Series E. 2006;49(3):313–21. https://doi.org/10.1007/s11431-006-0313-1.
    [13] Wong WS, Sands T, Cheung NW, Kneissl M, Bour DP, Mei P, et al. Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Appl Phys Lett. 1999;75(10):1360–2. https://doi.org/10.1063/1.124693.
    [14] Ryu HY, Jeon KS, Kang MG, Yuh HK, Choi YH, Lee JS. A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates. Sci Rep. 2017;7(1):44814. https://doi.org/10.1038/srep44814.
    [15] Dadgar A, Poschenrieder M, Bläsing J, Fehse K, Diez A, Krost A. Thick, crack-free blue light-emitting diodes on Si (111) using low-temperature AlN interlayers andin situSixNy masking. Appl Phys Lett. 2002;80(20):3670–2. https://doi.org/10.1063/1.1479455.
    [16] Cheng K, Leys M, Degroote S, van Daele B, Boeykens S, Derluyn J, et al. Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers. J Electron Mater. 2006;35(4):592–8. https://doi.org/10.1007/s11664-006-0105-1.
    [17] Zamir S, Meyler B, Salzman J. Thermal microcrack distribution control in GaN layers on Si substrates by lateral confined epitaxy. Appl Phys Lett. 2001;78(3):288–90. https://doi.org/10.1063/1.1338968.
    [18] Liu J, Feng F, Zhou Y, Zhang J, Jiang F. Stability of Al/Ti/au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate. Appl Phys Lett. 2011;99(11):111112. https://doi.org/10.1063/1.3640229.
    [19] Quan ZJ, Liu JL, Fang F, Wang GX, Jiang FY. A new interpretation for performance improvement of high-efficiency vertical blue light-emitting diodes by InGaN/GaN superlattices. J Appl Phys. 2015;118(19):6.
    [20] Tao X, Liu J, Zhang J, Mo C, Xu L, Ding J, et al. Performance enhancement of yellow InGaN-based multiple-quantum-well light-emitting diodes grown on Si substrates by optimizing the InGaN/GaN superlattice interlayer. Opt Mater Express. 2018;8(5):1221–30. https://doi.org/10.1364/OME.8.001221.
    [21] Mo C, Fang W, Pu Y, Liu H, Jiang F. Growth and characterization of InGaN blue LED structure on Si (111) by MOCVD. J Cryst Growth. 2005;285(3):312–7. https://doi.org/10.1016/j.jcrysgro.2005.08.046.
    [22] Liu L, Wang L, Li D, Liu N, Li L, Cao W, et al. Influence of indium composition in the prestrained InGaN interlayer on the strain relaxation of InGaN/GaN multiple quantum wells in laser diode structures. J Appl Phys. 2011;109(7):073106. https://doi.org/10.1063/1.3569848.
    [23] Jiang F, Wang L, Fang W. Semiconductor light-emitting device and method for making same: U.S. Patent 7, 919, 784[P]. 2011.
    [24] Huang X, Shi J, Li J, Wang Y, Chi N. A Gb/s VLC transmission using hardware Preequalization circuit. IEEE Photon Technol Lett. 2015;27(18):1915–8. https://doi.org/10.1109/LPT.2015.2445781.
    [25] Inan B, Jeffrey Lee SC, Randel S, Neokosmidis I, Koonen AMJ, Walewski JW. Impact of LED nonlinearity on discrete multitone modulation. J Opt Commun Netw. 2009;1(5):439–51. https://doi.org/10.1364/JOCN.1.000439.
    [26] Shafik RA, Rahman MS, Islam AHMR, Ieee. On the extended relationships among EVM, BER and SNR as performance metrics. In: Icece 2006: Proceedings of the 4th International Conference on Electrical and Computer Engineering; 2006. p. 408–+.
    [27] Levin HE. A complete and optimal data allocation method for practical discrete multitone systems. In: GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270); 2001.
    [28] Campello J. Optimal discrete bit loading for multicarrier modulation systems. In: Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252); 1998.
    [29] Chen M, He J, Tang J, Chen L. Pilot-aided sampling frequency offset estimation and compensation using DSP technique in DD-OOFDM systems. Opt Fiber Technol. 2014;20(3):268–73. https://doi.org/10.1016/j.yofte.2014.02.011.
    [30] Hussain B, Li X, Che F. Yue C P, and Wu L, visible light communication system design and link budget analysis. J Lightwave Technol. 2015;33(24):5201–9. https://doi.org/10.1109/JLT.2015.2499204.
    [31] Schubert EF, Gessmann T, Kim JK. Light emitting diodes. In: Kirk-Othmer Encyclopedia of Chemical Technology; 2000.
    [32] Windisch R, Knobloch A, Kuijk M, Rooman C, Dutta B, Kiesel P, et al. Large-signal-modulation of high-efficiency light-emitting diodes for optical communication. IEEE J Quantum Electron. 2000;36(12):1445–53. https://doi.org/10.1109/3.892565.
    [33] Piprek J. Efficiency droop in nitride-based light-emitting diodes. Phys Status Solidi (a). 2010;207(10):2217–25.
    [34] Kuritzky LY, Espenlaub AC, Yonkee BP, Pynn CD, DenBaars SP, Nakamura S, et al. High wall-plug efficiency blue III-nitride LEDs designed for low current density operation. Opt Express. 2017;25(24):30696–707. https://doi.org/10.1364/OE.25.030696.
  • 加载中
计量
  • 文章访问数:  109
  • HTML全文浏览量:  1
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-29
  • 录用日期:  2021-07-22
  • 网络出版日期:  2021-08-09

目录

    /

    返回文章
    返回