Citation: | Nicolas Goffin, Emilie Buache, Nathalie Lalun, Marion Fernandes, Ines Miguel, Catherine Muller, Charlotte Vaysse, Landry Blanc, Cyril Gobinet, Olivier Piot. Characterization of cancer-associated adipocytes by Raman spectroscopy and trajectory inference[J]. PhotoniX. doi: 10.1186/s43074-024-00146-3 |
[1] |
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48.
|
[2] |
Pati S, Irfan W, Jameel A, Ahmed S, Shahid RK. Obesity and cancer: a current overview of epidemiology, pathogenesis, outcomes, and management. Cancers. 2023;15(2):485.
|
[3] |
Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71(7):2455–65.
|
[4] |
Wu Q, Li B, Li Z, Li J, Sun S, Sun S. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol. 2019;12:1–15.
|
[5] |
Wu C, Dong S, Huang R, Chen X. Cancer-associated adipocytes and breast cancer: intertwining in the tumor microenvironment and challenges for cancer therapy. Cancers. 2023;15(3):726.
|
[6] |
Brock CK, Hebert KL, Artiles M, Wright MK, Cheng T, Windsor GO, et al. A role for adipocytes and adipose stem cells in the breast tumor microenvironment and regenerative medicine. Front Physiol. 2021;12:751239.
|
[7] |
Wu Q, Li B, Li J, Sun S, Yuan J, Sun S. Cancer-associated adipocytes as immunomodulators in cancer. Biomark Res. 2021;9:1–21.
|
[8] |
Kouri MA, Spyratou E, Karnachoriti M, Kalatzis D, Danias N, Arkadopoulos N, et al. Raman spectroscopy: a personalized decision-making tool on clinicians’ hands for in situ cancer diagnosis and surgery guidance. Cancers. 2022;14(5):1144.
|
[9] |
Sbroscia M, Di Gioacchino M, Ascenzi P, Crucitti P, di Masi A, Giovannoni I, et al. Thyroid cancer diagnosis by Raman spectroscopy. Sci Rep. 2020;10(1):13342.
|
[10] |
Hanna K, Krzoska E, Shaaban AM, Muirhead D, Abu-Eid R, Speirs V. Raman spectroscopy: Current applications in breast cancer diagnosis, challenges and future prospects. Br J Cancer. 2022;126(8):1125–39.
|
[11] |
He C, Zhu S, Wu X, Zhou J, Chen Y, Qian X, et al. Accurate tumor subtype detection with raman spectroscopy via variational autoencoder and machine learning. ACS Omega. 2022;7(12):10458–68.
|
[12] |
Paidi SK, Rodriguez Troncoso J, Raj P, Monterroso Diaz P, Ivers JD, Lee DE, et al. Raman spectroscopy and machine learning reveals early tumor microenvironmental changes induced by immunotherapy. Cancer Res. 2021;81(22):5745–55.
|
[13] |
Paidi SK, Diaz PM, Dadgar S, Jenkins SV, Quick CM, Griffin RJ, et al. Label-free Raman spectroscopy reveals signatures of radiation resistance in the tumor microenvironment. Cancer Res. 2019;79(8):2054–64.
|
[14] |
Torre-Gutiérrez LDL, Martínez-Zérega B, Oseguera-Galindo D, Aguilar-Lemarroy A, Jave-Suárez L, Torres-González L, et al. Breast cancer chemotherapy treatment monitoring based on serum sample Raman spectroscopy. Lasers Med Sci. 2022;37(9):3649–59.
|
[15] |
Cave E, Crowther NJ. The use of 3T3-L1 murine preadipocytes as a model of adipogenesis. Pre-Clin Models Tech Protoc. 2019;263–72.
|
[16] |
Ralston JC, Mutch DM. SCD1 inhibition during 3T3-L1 adipocyte differentiation remodels triacylglycerol, diacylglycerol and phospholipid fatty acid composition. Prostaglandins Leukot Essent Fat Acids. 2015;98:29–37.
|
[17] |
Rizzatti V, Boschi F, Pedrotti M, Zoico E, Sbarbati A, Zamboni M. Lipid droplets characterization in adipocyte differentiated 3T3-L1 cells: size and optical density distribution. Eur J Histochem EJH. 2013;57(3):159–62.
|
[18] |
Zebisch K, Voigt V, Wabitsch M, Brandsch M. Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem. 2012;425(1):88–90.
|
[19] |
Huang Z, Yu P, Tang J. Characterization of triple-negative breast cancer MDA-MB-231 cell spheroid model. OncoTargets Ther. 2020;5395–405.
|
[20] |
Tang L, Li T, Xie J, Huo Y, Ye J. Diversity and heterogeneity in human breast cancer adipose tissue revealed at single-nucleus resolution. Front Immunol. 2023;14:1158027.
|
[21] |
Ferrero R, Rainer P, Deplancke B. Toward a consensus view of mammalian adipocyte stem and progenitor cell heterogeneity. Trends Cell Biol. 2020;30(12):937–50.
|
[22] |
Kassotis CD, Hoffman K, Völker J, Pu Y, Veiga-Lopez A, Kim SM, et al. Reproducibility of adipogenic responses to metabolism disrupting chemicals in the 3T3-L1 pre-adipocyte model system: An interlaboratory study. Toxicology. 2021;461:152900.
|
[23] |
Loo LH, Lin HJ, Singh DK, Lyons KM, Altschuler SJ, Wu LF. Heterogeneity in the physiological states and pharmacological responses of differentiating 3T3-L1 preadipocytes. J Cell Biol. 2009;187(3):375.
|
[24] |
Le TT, Cheng JX. Single-cell profiling reveals the origin of phenotypic variability in adipogenesis. PLoS One. 2009;4(4):e5189.
|
[25] |
Zhu Q, Zhu Y, Hepler C, Zhang Q, Park J, Gliniak C, et al. Adipocyte mesenchymal transition contributes to mammary tumor progression. Cell Rep. 2022;40(11).
|
[26] |
Lee J, Hong BS, Ryu HS, Lee HB, Lee M, Park IA, et al. Transition into inflammatory cancer-associated adipocytes in breast cancer microenvironment requires microRNA regulatory mechanism. PLoS One. 2017;12(3):e0174126.
|
[27] |
Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell trajectory inference methods. Nat Biotechnol. 2019;37(5):547–54.
|
[28] |
Chen B, Zhu L, Yang S, Su W. Unraveling the heterogeneity and ontogeny of dendritic cells using single-cell RNA sequencing. Front Immunol. 2021;12:711329.
|
[29] |
Zhao J, Jaffe A, Li H, Lindenbaum O, Sefik E, Jackson R, et al. Detection of differentially abundant cell subpopulations in scRNA-seq data. Proc Natl Acad Sci. 2021;118(22):e2100293118.
|
[30] |
Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol. 2019;15(6):e8746.
|
[31] |
McInnes L, Healy J, Melville J. Umap: Uniform manifold approximation and projection for dimension reduction. 2018;arXiv:1802.03426.
|
[32] |
Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9(11):2579–605.
|
[33] |
Moon KR, Stanley JS III, Burkhardt D, van Dijk D, Wolf G, Krishnaswamy S. Manifold learning-based methods for analyzing single-cell RNA-sequencing data. Curr Opin Syst Biol. 2018;7:36–46.
|
[34] |
Xiang R, Wang W, Yang L, Wang S, Xu C, Chen X. A comparison for dimensionality reduction methods of single-cell RNA-seq data. Front Genet. 2021;12:646936.
|
[35] |
Sigle M, Rohlfing AK, Kenny M, Scheuermann S, Sun N, Graeßner U, et al. Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution. Nat Commun. 2023;14:5799.
|
[36] |
Yang KX, Xu F, Zhu L, Li H, Sun Q, Yan A, et al. An Isotope-Labeled Single-Cell Raman Spectroscopy Approach for Tracking the Physiological Evolution Trajectory of Bacteria toward Antibiotic Resistance. Angew Chem Int Ed Engl. 2023;62(14):e202217412.
|
[37] |
Kazemzadeh M, Martinez-Calderon M, Otupiri R, Artuyants A, Lowe MM, Ning X, et al. Manifold learning enables interpretable analysis of Raman spectra from extracellular vesicle and other mixtures. bioRxiv [Preprint]. 2023;2023.03.20.533481. https://doi.org/10.1101/2023.03.20.533481.
|
[38] |
Deconinck L, Cannoodt R, Saelens W, Deplancke B, Saeys Y. Recent advances in trajectory inference from single-cell omics data. Curr Opin Syst Biol. 2021;27:100344.
|
[39] |
Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics. 2018;19:477.
|
[40] |
Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, Göttgens B, et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 2019;20:1–9.
|
[41] |
Setty M, Kiseliovas V, Levine JH, Gayoso A, Mazutis L, Pe’er D. Characterization of cell fate probabilities in single-cell data with Palantir. Nat Biotechnol. 2019;37:451–60.
|
[42] |
Ji Z, Ji H. TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 2016;44:e117.
|
[43] |
Shin J, Berg DA, Zhu Y, Shin JY, Song J, Bonaguidi MA, et al. Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell. 2015;17(3):360–72.
|
[44] |
Haghverdi L, Büttner M, Wolf FA, Buettner F, Theis FJ. Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods. 2016;13:845–8.
|
[45] |
Goffin N, Buache E, Charpentier C, Lehrter V, Morjani H, Gobinet C, et al. Trajectory inference for unraveling dynamic biological processes from Raman spectral data. Anal Chem. 2023;95(9):4395–403.
|
[46] |
Afseth NK, Kohler A. Extended multiplicative signal correction in vibrational spectroscopy, a tutorial. Chemometr Intell Lab Syst. 2012;117:92–9.
|
[47] |
Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19(1):15.
|
[48] |
Tritschler S, Büttner M, Fischer DS, Lange M, Bergen V, Lickert H, et al. Concepts and limitations for learning developmental trajectories from single cell genomics. Development. 2019;146(12):dev170506.
|
[49] |
Schapiro D, Jackson HW, Raghuraman S, Fischer JR, Zanotelli VRT, Schulz D, et al. histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat Methods. 2017;14(9):873–6. https://doi.org/10.1038/nmeth.4391.
|
[50] |
Tratwal J, Falgayrac G, During A, Bertheaume N, Bataclan C, Tavakol DN, et al. Raman microspectroscopy reveals unsaturation heterogeneity at the lipid droplet level and validates an in vitro model of bone marrow adipocyte subtypes. Front Endocrinol. 2022;13:1001210.
|
[51] |
Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities. Scientific Reports. 2018;9.
|
[52] |
Shigematsu S, Miller SL, Pessin JE. Differentiated 3T3L1 Adipocytes Are Composed of Heterogenous Cell Populations with Distinct Receptor Tyrosine Kinase Signaling Properties*. J Biol Chem. 2001;276:15292–7.
|
[53] |
Haka AS, Sue E, Zhang C, Bhardwaj P, Sterling J, Carpenter C, et al. Noninvasive Detection of Inflammatory Changes in White Adipose Tissue by Label-Free Raman Spectroscopy. Anal Chem. 2016;88(4):2140–8.
|
[54] |
Mitchell A, Ashton L, Yang XB, Goodacre R, Smith A, Kirkham J. Detection of early stage changes associated with adipogenesis using Raman spectroscopy under aseptic conditions. Cytometry. 2015;87:1012–9.
|
[55] |
Czamara K, Majka Z, Stanek E, Hachlica N, Kaczor A. Raman studies of the adipose tissue: Current state-of-art and future perspectives in diagnostics. Prog Lipid Res. 2022;87:101183.
|
[56] |
Stanek E, Pacia MZ, Kaczor A, Czamara K. The distinct phenotype of primary adipocytes and adipocytes derived from stem cells of white adipose tissue as assessed by Raman and fluorescence imaging. Cell Mol Life Sci CMLS. 2022;79(7):383.
|
[57] |
Rinia HA, Burger KNJ, Bonn M, Müller M. Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy. Biophys J. 2008;95(10):4908–14.
|
[58] |
Bonn M, Müller M, Rinia HA, Burger KNJ. Imaging of chemical and physical state of individual cellular lipid droplets using multiplex CARS microscopy. J Raman Spectrosc. 2009;40:763–9.
|
[59] |
Zhang C, Huang KC, Rajwa B, Li J, Yang S, Lin H, et al. Stimulated Raman scattering flow cytometry for label-free single-particle analysis. Optica. 2017;4:103.
|
[60] |
Suzuki Y, Kobayashi K, Wakisaka Y, Deng D, Tanaka S, Huang CJ, et al. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proc Natl Acad Sci U S A. 2019;116:15842–8.
|
[61] |
Pavillon N, Smith NI. Non-invasive monitoring of T cell differentiation through Raman spectroscopy. Sci Rep. 2023;13(1):3129.
|
[62] |
Hsu CC, Xu J, Brinkhof B, Wang H, Cui Z, Huang WE, et al. A single-cell Raman-based platform to identify developmental stages of human pluripotent stem cell-derived neurons. Proc Natl Acad Sci U S A. 2020;117:18412–23.
|
[63] |
You S, Tu H, Zhao Y, Liu YZ, Chaney EJ, Marjanovic M, et al. Raman Spectroscopic Analysis Reveals Abnormal Fatty Acid Composition in Tumor Micro- and Macroenvironments in Human Breast and Rat Mammary Cancer. Sci Rep. 2016;6:32922.
|
[64] |
Guryleva MV, Penzar DD, Chistyakov DV, Mironov AA, Favorov AV, Sergeeva MG. Investigation of the Role of PUFA Metabolism in Breast Cancer Using a Rank-Based Random Forest Algorithm. Cancers. 2022;14(19):4663.
|
[65] |
Zhao T, Gao P, Li Y, Tian H, Ma D, Sun N, et al. Investigating the role of FADS family members in breast cancer based on bioinformatic analysis and experimental validation. Front Immunol. 2023;14:1074242.
|
[66] |
Sen U, Coleman C, Sen T. Stearoyl coenzyme A desaturase-1: multitasker in cancer, metabolism, and ferroptosis. Trends Cancer. 2023;9(6):480–9.
|
[67] |
Wang YY, Attané C, Milhas D, Dirat B, Dauvillier S, Guérard A, et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight. 2017;2(4):e87489.
|
[68] |
Balaban S, Shearer RF, Lee LS, van Geldermalsen M, Schreuder M, Shtein HC, et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 2017;5:1.
|