Citation: | Yongjia Xu, Feng Gao, Xiangqian Jiang. A brief review of the technological advancements of phase measuring deflectometry[J]. PhotoniX. doi: 10.1186/s43074-020-00015-9 |
[1] |
Sherrington I, Smith E. The significance of surface topography in engineering. Precis Eng. 1986;8:79–87.
|
[2] |
Gorthi S, Rastogi P. Fringe projection techniques: whither we are? Opt Lasers Eng. 2010;48:134–40.
|
[3] |
Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques. Opt Lasers Eng. 2010;48:149–58.
|
[4] |
Salvi J, Fernandez S, Pribanic T, Llado X. A state of the art in structured light patterns for surface profilometry. Pattern Recogn. 2010;43:2666–80.
|
[5] |
Mériaudeau F, Rantoson R, Fofi D, Stolz C. Review and comparison of non-conventional imaging systems for three-dimensional digitization of transparent objects. J Electron Imaging. 2012;21:21105–1.
|
[6] |
Chen F, Brown G, Song M. Overview of three-dimensional shape measurement using optical methods. Optim Eng. 2000;39:10–22.
|
[7] |
Blais F. Review of 20 years of range sensor development. J Electron Imaging. 2004;13:231–40.
|
[8] |
Wyant J. White light interferometry. Proc SPIE. 2002;4737:98–107.
|
[9] |
Jiang X, Wang K, Gao F, Muhamedsalih H. Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise. Appl Optics. 2010;49:2903–9.
|
[10] |
Dávila A. Wavelength scanning interferometry using multiple light sources. Opt Express. 2016;24:5311–22.
|
[11] |
Xue S, Chen S, Tie G. Near-null interferometry using an aspheric null lens generating a broad range of variable spherical aberration for flexible test of aspheres. Opt Express. 2018;26:31172–89.
|
[12] |
Murphy P, Forbes G, Fleig J, Dumas P, Tricard M. Stitching interferometry: a flexible solution for surface metrology. Opt and Photonics. 2004;14(5):38–43.
|
[13] |
Lee H, Kim S. Precision profile measurement of aspheric surfaces by improved Ronchi test. Optim Eng. 1999;38:1041–7.
|
[14] |
Butel G, Smith G, Burge J. Binary pattern deflectometry. Appl Optics. 2014;53:923–30.
|
[15] |
Kafri O, Glatt I. Moiré deflectometry: a ray deflection approach to optical testing. Optim Eng. 1985;24:944–60.
|
[16] |
Servin M, Rodriguez-Vera R, Carpio M, Morales A. Automatic fringe detection algorithm used for moire deflectometry. Appl Optics. 1990;29:3266–70.
|
[17] |
Wang B, Luo X, Pfeifer T, Mischo H. Moiré deflectometry based on Fourier-transform analysis. Measurement. 1999;25:245–53.
|
[18] |
Legarda-Saenz R. Robust wavefront estimation using multiple directional derivatives in Moiré deflectometry. Opt Lasers Eng. 2007;45:915–21.
|
[19] |
Schulz M, Ehret G, Fitzenreiter A. Scanning deflectometric form measurement avoiding path-dependent angle measurement errors. J Eur Opt Soc Rap Publ. 2010;5:10026.
|
[20] |
Hao Q, Zhu Q, Wang Y. Deflectometer with synthetically generated reference circle for aspheric surface testing. Opt Laser Technol. 2005;37:375–80.
|
[21] |
Amstel W, Bäumer S, Horijon J. Optical figure testing by scanning deflectometry. Proc SPIE. 1999;3739:283–90.
|
[22] |
Miks A, Novak J, Novak P. Method for reconstruction of shape of specular surfaces using scanning beam deflectometry. Opt Lasers Eng. 2013;51:867–72.
|
[23] |
Häusler G, Richter C, Leitz K, Knauer M. Microdeflectometry—a novel tool to acquire three-dimensional microtopography with nanometer height resolution. Opt Lett. 2008;33:396–8.
|
[24] |
Liu Y, Lehtonen P, Su X. High-accuracy measurement for small scale specular objects based on PMD with illuminated film. Opt Lasers Eng. 2012;44(2):459–62.
|
[25] |
Huang L, Ng CS, Asundi AK. Dynamic three-dimensional sensing for specular surface with monoscopic fringe reflectometry. Opt Express. 2011;19(13):12809–14.
|
[26] |
Li W, Sandner M, Gesierich A, Burke J. Absolute optical surface measurement with deflectometry. Interferometry XVI: Appl. 2012;8494:84940G.
|
[27] |
Bothe T, Li W, von Kopylow C, Juptner WP. High-resolution 3D shape measurement on specular surfaces by fringe reflection. Opt Metrology Prod Eng. 2004;5457:411–22.
|
[28] |
Su, P.; Parks, R.; Angel, R.; Wang, L.; Burge, J. A new test for optical surfaces. SPIE Newsroom 2011, 20.
|
[29] |
Xu X, Zhang X, Niu Z, Wang W, Zhu Y, Xu M. Self-calibration of in situ monoscopic deflectometric measurement in precision optical manufacturing. Opt Express. 2019;27(5):7523–36.
|
[30] |
Xu X, Zhang X, Niu Z, Wang W, Xu M. Extra-detection-free monoscopic deflectometry for the in situ measurement of freeform specular surfaces. Opt Lett. 2019;44(17):4271–4.
|
[31] |
Tang Y, Su X, Liu Y, Jing H. 3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry. Opt Express. 2008;16:15090–6.
|
[32] |
Petz M, Tutsch R. Measurement of optically effective surfaces by imaging of gratings. Opt Meas Syst Indust Inspect III. 2003;5144:288–94.
|
[33] |
Petz M, Ritter R. Reflection grating method for 3D measurement of reflecting surfaces. Opt Meas Syst Industr Inspect II: Appl Production Eng. 2001;4399:35–41.
|
[34] |
Guo H, Feng P, Tao T. Specular surface measurement by using least squares light tracking technique. Opt Lasers Eng. 2010;48(2):166–71.
|
[35] |
Xiao Y, Su X, Chen W, Liu Y. Three-dimensional shape measurement of aspheric mirrors with fringe reflection photogrammetry. Appl Optics. 2012;51(4):457–64.
|
[36] |
Li C, Li Y, Xiao Y, Zhang X, Tu D. Phase measurement deflectometry with refraction model and its calibration. Opt Express. 2018;26(26):33510–22.
|
[37] |
Zhang Z, Liu Y, Huang S, Niu Z, Guo J, Gao N, et al. Full-field 3D shape measurement of specular surfaces by direct phase to depth relationship. Proc SPIE. 2016;10023:100230X.
|
[38] |
Zhao P, Gao N, Zhang Z, Gao F, Jiang X. Performance analysis and evaluation of direct phase measuring deflectometry. Opt Lasers Eng. 2018;103:1339–51.
|
[39] |
Liu Y, Huang S, Zhang Z, Gao N, Gao F, Jiang X. Full-field 3D shape measurement of discontinuous specular objects by direct phase measuring deflectometry. Sci Rep. 2017;7(1):10293.
|
[40] |
Knauer M, Kaminski J, Hausler G. Phase measuring deflectometry: a new approach to measure specular free-form surfaces. Proc SPIE. 2004;5457:366–76.
|
[41] |
Ren H, Gao F, Jiang X. Iterative optimization calibration method for stereo deflectometry. Opt Express. 2015;23:22060–8.
|
[42] |
Xu Y, Gao F, Zhang Z, Jiang X. A holistic calibration method with iterative distortion compensation for stereo deflectometry. Opt Lasers Eng. 2018;106:111–8.
|
[43] |
Towers CE, Towers DP, Jones JDC. Absolute fringe order calculation using optimised multi-frequency selection in full-field profilometry. Opt Lasers Eng. 2005;43(7):788–800.
|
[44] |
Zhang Z, Towers CE, Towers DP. Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency selection. Opt Express. 2006;14(14):6444–55.
|
[45] |
Häusler G, Faber C, Olesch E, Ettl S. Deflectometry vs. interferometry. Opt Meas Syst Indust Inspect VIII, Int Soc Opt Photonics. 2013;8788:87881C.
|
[46] |
Niu Z, Xu X, Zhang X, Wang W, Zhu Y, Ye J, et al. Efficient phase retrieval of two-directional phase-shifting fringe patterns using geometric constraints of deflectometry. Opt Express. 2019;27(6):8195–207.
|
[47] |
Ren H, Gao F, Jiang X. Improvement of high-order least-squares integration method for stereo deflectometry. Appl Optics. 2015;54:10249–55.
|
[48] |
Xu Y, Gao F, Jiang X. Enhancement of measurement accuracy of optical stereo deflectometry based on imaging model analysis. Opt Lasers Eng. 2018;111:1–7.
|
[49] |
Xu Y, Gao F, Jiang X. Performance analysis and evaluation of geometric parameters in stereo Deflectometry. Engineering. 2018;4(6):806–15.
|
[50] |
Höfer S, Burke J, Heizmann M. Infrared deflectometry for the inspection of diffusely specular surfaces. Adv Opt Technol. 2016;5(5–6):377–87.
|
[51] |
Li C, Zhang X, Tu D. Posed relationship calibration with parallel mirror reflection for stereo deflectometry. Optim Eng. 2018;57(3):034103.
|
[52] |
Petz M, Fischer FM, Tutsch R. Systematic errors in deflectometry induced by use of liquid crystal displays as reference structure. In: Proc. 21st IMEKO TC2 symposium on photonics in measurement; 2013. p. 16–8.
|
[53] |
Huang L, Idir M, Zuo C, Asundi A. Review of phase measuring deflectometry. Opt Lasers Eng. 2018;107:247–57.
|
[54] |
Zhang Z, Wang Y, Huang S, Liu Y, Chang C, Gao F, et al. Three-dimensional shape measurements of specular objects using phase-measuring deflectometry. Sensors. 2017;17(12):2835.
|
[55] |
Zhang Z. A flexible new technique for camera calibration. In: IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000;22(11):1330-34. https://doi.org/10.1109/34.888718.
|
[56] |
Zuo C, Chen Q, Gu G, Feng S, Feng F, Li R, et al. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection. Opt Lasers Eng. 2013;51(8):953–60.
|
[57] |
Huang L, Zhang Q, Asundi A. Camera calibration with active phase target: improvement on feature detection and optimization. Opt Lett. 2013;38(9):1446–8.
|
[58] |
Schmalz C, Forster F, Angelopoulou E. Camera calibration: active versus passive targets. Optim Eng. 2011;50(11):113601.
|
[59] |
Xu Y, Gao F, Ren H, Jiang X. An iterative distortion compensation algorithm for camera calibration based on phase target. Sensors. 2017;17(6):1188.
|
[60] |
Huang L, Xue J, Gao B, Mcpherson C, Beverage J, Idir M. Modal phase measuring deflectometry. Opt Express. 2016;24:24649–64.
|
[61] |
Breitbarth M, Kühmstedt P, Notni G. Calibration of a combined system with phase measuring deflectometry and fringe projection. Opt Meas Syst Industr Inspect VI. 2009;7389:738909.
|
[62] |
Xiao Y, Su X, You Z. Pose transfer geometrical calibration for fringe-reflection optical three-dimensional measurement. Opt Commun. 2013;305:143–6.
|
[63] |
Soumelidis A, Fazekas Z, Bodis-Szomoru A, Schipp F, Csakany B, Nemeth J. Specular surface reconstruction method for multi-camera corneal topographer arrangements. In: Recent advances in biomedical engineering; 2009. p. 639–60.
|
[64] |
Olesch E, Faber C, Hausler G. Deflectometric self-calibration for arbitrary specular surfaces. DGaO proceedings; 2011.
|
[65] |
Huang L, Xue J, Gao B, Zuo C, Idir M. Spline based least squares integration for two-dimensional shape or wavefront reconstruction. Opt Lasers Eng. 2017;91:221–6.
|
[66] |
Li M, Li D, Jin C, Kewei E, Yuan X, Xiong Z, et al. Improved zonal integration method for high accurate surface reconstruction in quantitative deflectometry. Appl Optics. 2017;56(13):144–51.
|
[67] |
Huang L, Idir M, Zuo C, Kaznatcheev K, Zhou L, Asundi A. Comparison of two-dimensional integration methods for shape reconstruction from gradient data. Opt Lasers Eng. 2015;64:1–11.
|
[68] |
Flores JL, Legarda-Saenz R, Garcia-Torales G. Color deflectometry for phase retrieval using phase-shifting methods. Opt Commun. 2015;334:298–302.
|
[69] |
Graves LR, Quach H, Choi H, Kim DW. Infinite deflectometry enabling 2π-steradian measurement range. Opt Express. 2019;27(5):7602–15.
|
[70] |
Carvalho MJ, Veiga CL, Albertazzi A. Defectometry in cylindrical coordinates using a conical mirror: principles and proof of concept. J Braz Soc Mech Sci & Eng. 2019;41(9):380.
|
[71] |
Butel GP, Smith GA, Burge JH. Deflectometry using portable devices. Optim Eng. 2015;54(2):025111.
|
[72] |
Willomitzer F, Yeh CK, Gupta V, Spies W, Schiffers F, Walton M, et al. Uncalibrated Deflectometry with a Mobile device on extended specular surfaces. arXiv preprint arXiv. 2019;1907:10700.
|
[73] |
Boccardi F, Heath RW, Lozano A, Marzetta TL, Popovski P. Five disruptive technology directions for 5G. IEEE Commun Mag. 2014;52(2):74–80.
|