Citation: | Deming Peng, Zhaofeng Huang, Yonglei Liu, Yahong Chen, Fei Wang, Sergey A. Ponomarenko, Yangjian Cai. Optical coherence encryption with structured random light[J]. PhotoniX. doi: 10.1186/s43074-021-00027-z |
[1] |
Mandel L, Wolf E. Optical Coherence and Quantum Optics. Cambridge: Cambridge University Press; 1995.
|
[2] |
Friberg A, Setälä T. Electromagnetic theory of optical coherence. J Opt Soc Am A. 2016; 33:2431–42.
|
[3] |
Chen Y, Norrman A, Ponomarenko S, Friberg A. Optical coherence and electromagnetic surface waves. Prog Opt. 2020; 65:105–72.
|
[4] |
Korotkova O, Gbur G. Applications of optical coherence theory. Prog Opt. 2020; 65:43–104.
|
[5] |
Baleine E, Dogariu A. Variable coherence scattering microscopy. Phys Rev Lett. 2005; 95(19):193904.
|
[6] |
Redding B, Choma M, Cao H. Speckle-free laser imaging using random laser illumination. Nat Photon. 2012; 6(6):355–9.
|
[7] |
Gbur G. Partially coherent beam propagation in atmospheric turbulence. J Opt Soc Am A. 2014; 31(9):2038–45.
|
[8] |
Ponomarenko S. A class of partially coherent beams carrying optical vortices. J Opt Soc Am A. 2001; 18(1):150–6.
|
[9] |
Ponomarenko S, Huang W, Cada M. Dark and antidark diffraction-free beams. Opt Lett. 2007; 32(17):2508–10.
|
[10] |
Bogatyryova G, Fel’de C, Polyanskii P, Ponomarenko S, Soskin M, Wolf E. Partially coherent vortex beams with a separable phase. Opt Lett. 2003; 28(11):878–80.
|
[11] |
Gori F, Santarsiero M. Devising genuine spatial correlation functions. Opt Lett. 2007; 32(24):3531–3.
|
[12] |
Martínez-Herrero R, Mejías P, Gori F. Genuine cross-spectral densities and pseudo-modal expansions. Opt Lett. 2009; 34(9):1399–401.
|
[13] |
Sahin S, Korotkova O. Light sources generating far fields with tunable flat profiles. Opt Lett. 2012; 37(14):2970–2.
|
[14] |
Mei Z, Korotkova O. Random sources generating ring-shaped beams. Opt Lett. 2013; 38(2):91–3.
|
[15] |
Wang F, Liu X, Yuan Y, Cai Y. Experimental generation of partially coherent beams with different complex degrees of coherence. Opt Lett. 2013; 38(11):1814–6.
|
[16] |
Ma L, Ponomarenko S. Optical coherence gratings and lattices. Opt Lett. 2014; 39(23):6656–9.
|
[17] |
Chen Y, Wang F, Liu L, Zhao C, Cai Y, Korotkova O. Generation and propagation of a partially coherent vector beam with special correlation functions. Phys Rev A. 2014; 89(1):013801.
|
[18] |
Chen Y, Gu J, Wang F, Cai Y. Self-splitting properties of a hermite-gaussian correlated schell-model beam. Phys Rev A. 2015; 91(1):013823.
|
[19] |
Sun B, Huang Z, Zhu X, Wu D, Chen Y, Wang F, Cai Y, Korotkova O. Random source for generating airy-like spectral density in the far field. Opt Express. 2020; 28(5):7182–96.
|
[20] |
Lajunen H, Saastamoinen T. Propagation characteristics of partially coherent beams with spatially varying correlations. Opt Lett. 2011; 36(20):4104–6.
|
[21] |
Santarsiero M, Martínez-Herrero R, Maluenda D, De Sande J, Piquero G, Gori F. Partially coherent sources with circular coherence. Opt Lett. 2017; 42(8):1512–5.
|
[22] |
Piquero G, Santarsiero M, Martínez-Herrero R, de Sande J, Alonzo M, Gori F. Partially coherent sources with radial coherence. Opt Lett. 2018; 43(10):2376–9.
|
[23] |
Hyde IV M, Bose-Pillai S, Wood R. Synthesis of non-uniformly correlated partially coherent sources using a deformable mirror. Appl Phys Lett. 2017; 111(10):101106.
|
[24] |
Zhu X, Wang F, Zhao C, Cai Y, Ponomarenko S. Experimental realization of dark and antidark diffraction-free beams. Opt Lett. 2019; 44(9):2260–3.
|
[25] |
Hyde M, Xiao X, Voelz D. Generating electromagnetic nonuniformly correlated beams. Opt Lett. 2019; 44(23):5719–22.
|
[26] |
Yu J, Zhu X, Lin S, Wang F, Gbur G, Cai Y. Vector partially coherent beams with prescribed non-uniform correlation structure. Opt Lett. 2020; 45(13):3824–7.
|
[27] |
Zhu X, Yu J, Chen Y, Wang F, Korotkova O, Cai Y. Experimental synthesis of random light sources with circular coherence by digital micro-mirror device. Appl Phys Lett. 2020; 117(12):121102.
|
[28] |
Wang F, Chen Y, Liu X, Cai Y, Ponomarenko S. Self-reconstruction of partially coherent light beams scattered by opaque obstacles. Opt Express. 2016; 24(21):23735–46.
|
[29] |
Xu Z, Liu X, Chen Y, Wang F, Liu L, Monfared Y, Ponomarenko S, Cai Y, Liang C. Self-healing properties of hermite-gaussian correlated schell-model beams. Opt Express. 2020; 28(3):2828–37.
|
[30] |
Ding C, Koivurova M, Turunen J, Pan L. Self-focusing of a partially coherent beam with circular coherence. J Opt Soc Am A. 2017; 34(8):1441–7.
|
[31] |
Lin S, Wang C, Zhu X, Lin R, Wang F, Gbur G, Cai Y, Yu J. Propagation of radially polarized hermite non-uniformly correlated beams in a turbulent atmosphere. Opt Express. 2020; 28(19):27238–49.
|
[32] |
Chen Y, Ponomarenko S, Cai Y. Self-steering partially coherent beams. Sci Rep. 2017; 7(1):1–7.
|
[33] |
Mao H, Chen Y, Liang C, Chen L, Cai Y, Ponomarenko S. Self-steering partially coherent vector beams. Opt Express. 2019; 27(10):14353–68.
|
[34] |
Hyde IV M, Basu S, Xiao X, Voelz D. Producing any desired far-field mean irradiance pattern using a partially-coherent schell-model source. J Opt. 2015; 17(5):055607.
|
[35] |
Voelz D, Xiao X, Korotkova O. Numerical modeling of schell-model beams with arbitrary far-field patterns. Opt Lett. 2015; 40(3):352–5.
|
[36] |
Ma L, Ponomarenko S. Free-space propagation of optical coherence lattices and periodicity reciprocity. Opt Express. 2015; 23(2):1848–56.
|
[37] |
Chen Y, Ponomarenko S, Cai Y. Experimental generation of optical coherence lattices. Appl Phys Lett. 2016; 109(6):061107.
|
[38] |
Divitt S, Novotny L. Spatial coherence of sunlight and its implications for light management in photovoltaics. Optica. 2015; 2(2):95–103.
|
[39] |
Lu X, Shao Y, Zhao C, Konijnenberg S, Zhu X, Tang Y, Cai Y, Urbach H. Noniterative spatially partially coherent diffractive imaging using pinhole array mask. Adv Photon. 2019; 1(1):016005.
|
[40] |
Huang Z, Chen Y, Wang F, Ponomarenko S, Cai Y. Measuring complex degree of coherence of random light fields with generalized hanbury brown–twiss experiment. Phys Rev Appl. 2020; 13(4):044042.
|
[41] |
Dong Z, Huang Z, Chen Y, Wang F, Cai Y. Measuring complex correlation matrix of partially coherent vector light via a generalized hanbury brown–twiss experiment. Opt Express. 2020; 28(14):20634–44.
|
[42] |
Xu Z, Li X, Liu X, Ponomarenko S, Cai Y, Liang C. Vortex preserving statistical optical beams. Opt Express. 2020; 28(6):8475–83.
|
[43] |
Yang B, Chen Y, Wang F, Cai Y. Trapping two types of rayleigh particles simultaneously by a focused rotational elliptical laguerre–gaussian correlated schell-model beam. J Quant Spectrosc Radiat Transf. 2021; 262:107518.
|
[44] |
Liu S, Guo C, Sheridan J. A review of optical image encryption techniques. Opt Laser Technol. 2014; 57:327–42.
|
[45] |
Chen W, Javidi B, Chen X. Advances in optical security systems. Adv Opt Photon. 2014; 6(2):120–55.
|
[46] |
Refregier P, Javidi B. Optical image encryption based on input plane and fourier plane random encoding. Opt Lett. 1995; 20(7):767–9.
|
[47] |
Unnikrishnan G, Joseph J, Singh K. Optical encryption by double-random phase encoding in the fractional fourier domain. Opt Lett. 2000; 25(12):887–9.
|
[48] |
Situ G, Zhang J. Double random-phase encoding in the fresnel domain. Opt Lett. 2004; 29(14):1584–6.
|
[49] |
Matoba O, Javidi B. Encrypted optical memory system using three-dimensional keys in the fresnel domain. Opt Lett. 1999; 24(11):762–4.
|
[50] |
Rubinsztein-Dunlop H, Forbes A, et al. Roadmap on structured light. J Opt. 2016; 19(1):013001.
|
[51] |
Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications. J Opt. 2018; 20(12):123001.
|
[52] |
Forbes A. Structured light from lasers. Laser Photon Rev. 2019; 13(11):1900140.
|
[53] |
Qu G, Yang W, Song Q, Liu Y, Qiu C-W, Han J, Tsai D-P, Xiao S. Reprogrammable meta-hologram for optical encryption. Nat Commun. 2020; 11(1):1–5.
|
[54] |
Trichili A, Salem A, Dudley A, Zghal M, Forbes A. Encoding information using laguerre gaussian modes over free space turbulence media. Opt Lett. 2016; 41(13):3086–9.
|
[55] |
Fang X, Ren H, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photon. 2020; 14(2):102–8.
|
[56] |
Qiao Z, Wan Z, Xie G, Wang J, Qian L, Fan D. Multi-vortex laser enabling spatial and temporal encoding. PhotoniX. 2020; 1:1–14.
|
[57] |
Zhao Y, Wang J. High-base vector beam encoding/decoding for visible-light communications. Opt Lett. 2015; 40(21):4843–6.
|
[58] |
Milione G, Nguyen T, Leach J, Nolan D, Alfano R. Using the nonseparability of vector beams to encode information for optical communication. Opt Lett. 2015; 40(21):4887–90.
|
[59] |
Xian M, Xu Y, Ouyang X, Cao Y, Lan S, Li X. Segmented cylindrical vector beams for massively-encoded optical data storage. Sci Bull. 2020; 65(24):2072–9.
|
[60] |
Larocque H, D’Errico A, Ferrer-Garcia M, Carmi A, Cohen E, Karimi E. Optical framed knots as information carriers. Nat Commun. 2020; 11(1):1–8.
|
[61] |
Goodman J. Statistical Optics. New York: Wiley; 2015.
|
[62] |
Ni H, Liang C, Wang F, Chen Y, Ponomarenko S, Cai Y. Non-gaussian statistics of partially coherent light in atmospheric turbulence. Chin Phys B. 2020; 29(6):064203.
|
[63] |
Alfalou A, Brosseau C. Optical image compression and encryption methods. Adv Opt Photon. 2009; 1(3):589–636.
|
[64] |
Javidi B, Carnicer A, Yamaguchi M, et al.Roadmap on optical security. J Opt. 2016; 18(8):083001.
|
[65] |
Takeda M, Wang W, Naik D, Singh R. Spatial statistical optics and spatial correlation holography: a review. Opt Rev. 2014; 21(6):849–61.
|