Citation: | Yingying Wang, Shixun Dai. Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review[J]. PhotoniX. doi: 10.1186/s43074-021-00031-3 |
[1] |
Agrawal GP. Nonlinear fiber optics. Fifth edition. Amsterdam: Elsevier; 2013.
|
[2] |
Price JHV, Feng X, Heidt AM, Brambilla G, Horak P, Poletti F, et al. Supercontinuum generation in non-silica fibers. Opt Fiber Technol. 2012;18(5):327–44. https://doi.org/10.1016/j.yofte.2012.07.013.
|
[3] |
Dudley JM, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Rev Mod Phys. 2006;78(4):1135–84. https://doi.org/10.1103/RevModPhys.78.1135.
|
[4] |
Alfano RR, Shapiro SL. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys Rev Lett. 1970;24(11):592–4. https://doi.org/10.1103/PhysRevLett.24.592.
|
[5] |
Nicolas C, Alexandre D, Guillaume C, Mathieu D, William R, Claire AG, et al. Supercontinuum laser absorption spectroscopy in the mid-infrared range for identification and concentration estimation of a multi-component atmospheric gas mixture. Proc.SPIE. 2011;8182. https://doi.org/10.1117/12.898227.
|
[6] |
Amiot C, Aalto A, Ryczkowski P, Toivonen J, Genty G. Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source. Appl Phys Lett. 2017;111(6):061103. https://doi.org/10.1063/1.4985263.
|
[7] |
Jahromi EK, Nematollahi M, Pan Q, Abbas MA, Cristescu SM, Harren FJM, et al. Sensitive multi-species trace gas sensor based on a high repetition rate mid-infrared supercontinuum source. Opt Express. 2020;28(18):26091–101. https://doi.org/10.1364/OE.396884.
|
[8] |
Seddon AB. A prospective for new mid-infrared medical endoscopy using chalcogenide glasses. Int J Appl Glas Sci. 2011;2(3):177–91. https://doi.org/10.1111/j.2041-1294.2011.00059.x.
|
[9] |
Moselund P, Petersen C, Dupont S, Agger C, Bang O, Keiding SR. Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared. Proc.SPIE. 2012;83811A. https://doi.org/10.1117/12.920094.
|
[10] |
Petersen CR, Prtljaga N, Farries M, Ward J, Napier B, Lloyd GR, et al. Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Opt Lett. 2018;43(5):999–1002. https://doi.org/10.1364/OL.43.000999.
|
[11] |
Cheung CS, Daniel JMO, Tokurakawa M, Clarkson WA, Liang H. High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source. Opt Express. 2015;23(3):1992–2001. https://doi.org/10.1364/OE.23.001992.
|
[12] |
Israelsen NM, Petersen CR, Barh A, Jain D, Jensen M, Hannesschläger G, et al. Real-time high-resolution mid-infrared optical coherence tomography. Light Sci Appl. 2019;8(11). https://doi.org/10.1038/s41377-019-0122-5.
|
[13] |
Schliesser A, Picqué N, Hänsch TW. Mid-infrared frequency combs. Nat Photonics. 2012;6(7):440–9. https://doi.org/10.1038/nphoton.2012.142.
|
[14] |
Xia C, Kumar M, Kulkarni OP, Islam MN, Terry JFL, Freeman MJ, et al. Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping. Opt Lett. 2006;31(17):2553–5. https://doi.org/10.1364/OL.31.002553.
|
[15] |
Yang W, Zhang B, Xue G, Yin K, Hou J. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system. Opt Lett. 2014;39(7):1849–52. https://doi.org/10.1364/OL.39.001849.
|
[16] |
Qin G, Yan X, Kito C, Liao M, Chaudhari C, Suzuki T, et al. Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber. Appl Phys Lett. 2009;95(16):161103.
|
[17] |
Swiderski J, Michalska M, Maze G. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked tm-doped fiber laser and amplifier system. Opt Express. 2013;21(7):7851–7. https://doi.org/10.1364/OE.21.007851.
|
[18] |
Yang L, Li Y, Zhang B, Wu T, Zhao Y, Hou J. 30-W supercontinuum generation based on ZBLAN fiber in an all-fiber configuration. Photon Res. 2019;7(9):1061–5. https://doi.org/10.1364/PRJ.7.001061.
|
[19] |
Domachuk P, Wolchover NA, Cronin-Golomb M, Wang A, George AK, Cordeiro CMB, et al. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt Express. 2008;16(10):7161–8. https://doi.org/10.1364/OE.16.007161.
|
[20] |
Liao M, Gao W, Duan Z, Yan X, Suzuki T, Ohishi Y. Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser. Opt Lett. 2012;37(11):2127–9. https://doi.org/10.1364/OL.37.002127.
|
[21] |
Yu Y, Zhang B, Gai X, Zhai C, Qi S, Guo W, et al. 1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power. Opt Lett. 2015;40(6):1081–4. https://doi.org/10.1364/OL.40.001081.
|
[22] |
Saini TS, Kumar A, Kumar SR. Broadband mid-IR supercontinuum generation in As2Se3 based chalcogenide photonic crystal fiber: A new design and analysis. Opt Commun. 2015;347:13–9. https://doi.org/10.1016/j.optcom.2015.02.049.
|
[23] |
Al-Kadry A, Li L, Amraoui ME, North T, Messaddeq Y, Rochette M. Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires. Opt Lett. 2015;40(20):4687–90. https://doi.org/10.1364/OL.40.004687.
|
[24] |
Sun Y, Dai S, Zhang P, Wang X, Xu Y, Liu Z, et al. Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures. Opt Express. 2015;23(18):23472–83. https://doi.org/10.1364/OE.23.023472.
|
[25] |
Zhao Z, Wu B, Wang X, Pan Z, Liu Z, Zhang P, et al. Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber. Laser Photonics Rev. 2017;11(2):1700005.
|
[26] |
Shiryaev VS, Churbanov MF. Trends and prospects for development of chalcogenide fibers for mid-infrared transmission. J Non-Cryst Solids. 2013;377:225–30.
|
[27] |
Cui S, Chahal R, Boussard-Plédel C, Nazabal V, Doualan JL, Troles J, et al. From Selenium- to Tellurium-Based Glass Optical Fibers for Infrared Spectroscopies. Molecules. 2013;18(5):5373–88. https://doi.org/10.3390/molecules18055373.
|
[28] |
Slusher RE, Lenz G, Hodelin J, Sanghera J, Shaw LB, Aggarwal ID. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers. J. Opt. Soc. Am. B. 2004;21(6):1146–55. https://doi.org/10.1364/JOSAB.21.001146.
|
[29] |
Yan B, Huang T, Zhang W, Wang J, Yang L, Yang P, et al. Generation of watt-level supercontinuum covering 2-6.5 μm in an all-fiber structured infrared nonlinear transmission system. Opt Express. 2021;29(3):4048–57. https://doi.org/10.1364/OE.415534.
|
[30] |
Borisova ZU. Glassy Semiconductors: Springer; 1981.
|
[31] |
Wang R, Zha CJ, Rode AV, Madden SJ, Luther-Davies B. Thermal characterization of Ge–as–se glasses by differential scanning calorimetry. J Mater Sci-Mater El. 2007;18(1):419–22. https://doi.org/10.1007/s10854-007-9229-1.
|
[32] |
Yang Z, Gulbiten O, Lucas P, Luo T, Jiang S. Long-wave infrared-transmitting optical fibers. J Am Ceram Soc. 2011;94(6):1761–5. https://doi.org/10.1111/j.1551-2916.2010.04313.x.
|
[33] |
Sivakumaran K, Nair CKS. Rapid synthesis of chalcogenide glasses of se–Te–Sb system by microwave irradiation. J Phys D Appl Phys. 2005;38(14):2476–9. https://doi.org/10.1088/0022-3727/38/14/026.
|
[34] |
Thompson D, Danto S, Musgraves JD, Wachtel P, Giroire B, Richardson K. Microwave assisted synthesis of high purity As2Se3 chalcogenide glasses. Physics Chem Glasses Eur J Glass Sci Technol Part B. 2013;54(1):27–34.
|
[35] |
Katsuyama T, Satoh S, Matsumura H. Fabrication of high-purity chalcogenide glasses by chemical vapor deposition. J Appl Phys. 1986;59(5):1446–9. https://doi.org/10.1063/1.336496.
|
[36] |
Tao G, Ebendorff-Heidepriem H, Stolyarov AM, Danto S, Badding JV, Fink Y, et al. Infrared fibers. Adv Opt Photon. 2015;7(2):379–458. https://doi.org/10.1364/AOP.7.000379.
|
[37] |
Pelusi MD, Ta'eed VG, Fu L, Magi E, Lamont MRE, Madden S, et al. Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing. IEEE J Sel Top Quant. 2008;14(3):529–39.
|
[38] |
Sanghera JS, Aggarwal ID. Active and passive chalcogenide glass optical fibers for IR applications: a review. J Non-Cryst Solids. 1999;256–257:6–16.
|
[39] |
Sanghera JS, Florea CM, Shaw LB, Pureza P, Nguyen VQ, Bashkansky M, et al. Non-linear properties of chalcogenide glasses and fibers. J Non-Cryst Solids. 2008;354(2–9):462–7. https://doi.org/10.1016/j.jnoncrysol.2007.06.104.
|
[40] |
Nishii J, Yamashita T, Yamagishi T. Low-loss chalcogenide glass fiber with core-cladding structure. Appl Phys Lett. 1988;53(7):553–4. https://doi.org/10.1063/1.99854.
|
[41] |
Zhang B, Guo W, Yu Y, Zhai C, Qi S, Yang A, et al. Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation. J Am Ceram Soc. 2015;98(5):1389–92. https://doi.org/10.1111/jace.13574.
|
[42] |
Jayasuriya D, Petersen CR, Furniss D, Markos C, Tang Z, Habib MS, et al. Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-as-se-Te chalcogenide step-index fiber. Opt Mater Express. 2019;9(6):2617–29.
|
[43] |
Furniss D, Seddon AB. Towards monomode proportioned fibreoptic preforms by extrusion. J Non-Cryst Solids. 1999;256(99):232–6.
|
[44] |
Jiang C, Wang X, Zhu M, Xu H, Nie Q, Dai S, et al. Preparation of chalcogenide glass fiber using an improved extrusion method. Opt Eng. 2016;55(5):056114. https://doi.org/10.1117/1.OE.55.5.056114.
|
[45] |
Baker C, Rochette M. Highly nonlinear hybrid AsSe-PMMA microtapers. Opt Express. 2010;18(12):12391–8. https://doi.org/10.1364/OE.18.012391.
|
[46] |
Russell P. Photonic crystal fibers. Science. 2003;299(5605):358–62. https://doi.org/10.1126/science.1079280.
|
[47] |
Renversez G, Kuhlmey B, McPhedran R. Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses. Opt Lett. 2003;28(12):989–91. https://doi.org/10.1364/OL.28.000989.
|
[48] |
Schuster K, Kobelke J, Grimm S, Schwuchow A, Kirchhof J, Bartelt H, et al. Microstructured fibers with highly nonlinear materials. Opt Quant Electron. 2007;39(12):1057–69. https://doi.org/10.1007/s11082-007-9161-x.
|
[49] |
Wang P, Huang J, Xie S, Troles J, Russell PS. Broadband mid-infrared supercontinuum generation in dispersion-engineered As2S3-silica nanospike waveguides pumped by 2.8 μm femtosecond laser. Photon Res. 2021;9(4):630–6. https://doi.org/10.1364/PRJ.415339.
|
[50] |
Wang Y, Dai S, Li G, Xu D, You C, Han X, et al. 1.4–7.2 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime. Opt Lett. 2017;42(17):3458–61. https://doi.org/10.1364/OL.42.003458.
|
[51] |
Désévédavy F, Renversez G, Brilland L, Houizot P, Troles J, Coulombier Q, et al. Small-core chalcogenide microstructured fibers for the infrared. Appl Opt. 2008;47(32):6014–21. https://doi.org/10.1364/AO.47.006014.
|
[52] |
Brilland L, Smektala F, Renversez G, Chartier T, Troles J, Nguyen TN, et al. Fabrication of complex structures of holey fibers in Chalcogenide glass. Opt Express. 2006;14(3):1280–5. https://doi.org/10.1364/OE.14.001280.
|
[53] |
Coulombier Q, Brilland L, Houizot P, Chartier T, Nguyen TN, Smektala F, et al. Casting method for producing low-loss chalcogenide microstructured optical fibers. Opt Express. 2010;18(9):9107–12. https://doi.org/10.1364/OE.18.009107.
|
[54] |
Ghosh AN, Meneghetti M, Petersen CR, Bang O, Brilland L, Venck S, et al. Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation. J Phys Photonics. 2019;1(4):044003. https://doi.org/10.1088/2515-7647/ab3b1e.
|
[55] |
Troles J, Coulombier Q, Canat G, Duhant M, Renard W, Toupin P, et al. Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm. Opt Express. 2010;18(25):26647–54. https://doi.org/10.1364/OE.18.026647.
|
[56] |
Mouawad O, Picot-Clémente J, Amrani F, Strutynski C, Fatome J, Kibler B, et al. Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers. Opt Lett. 2014;39(9):2684–7. https://doi.org/10.1364/OL.39.002684.
|
[57] |
Mouawad O, Kedenburg S, Steinle T, Steinmann A, Kibler B, Désévédavy F, et al. Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers. Appl Phys B Lasers Opt. 2016;122(6):177. https://doi.org/10.1007/s00340-016-6453-5.
|
[58] |
Shaw LB, Thielen PA, Kung FH, Nguyen VQ, Sanghera JS, Aggarwal ID. IR Supercontinuum eneration in As-Se Photonic crystal fiber. inAdvanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005): TuC5. https://doi.org/10.1364/ASSP.2005.TuC5.
|
[59] |
Wei DP, Galstian TV, Smolnikov IV, Plotnichenko VG, Zohrabyan A. Spectral broadening of femtosecond pulses in a single-mode as-S glass fiber. Opt Express. 2005;13(7):2439–43. https://doi.org/10.1364/OPEX.13.002439.
|
[60] |
Gattass RR, Shaw LB, Nguyen VQ, Pureza PC, Aggarwal ID, Sanghera JS. All-fiber chalcogenide-based mid-infrared supercontinuum source. Opt Fiber Technol. 2012;18(5):345–8. https://doi.org/10.1016/j.yofte.2012.07.003.
|
[61] |
Petersen CR, Møller U, Kubat I, Zhou B, Dupont S, Ramsay J, et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat Photonics. 2014;8(11):830–4. https://doi.org/10.1038/nphoton.2014.213.
|
[62] |
Hudson DD, Dekker SA, Mägi EC, Judge AC, Jackson SD, Li E, et al. Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy. Opt Lett. 2011;36(7):1122–4. https://doi.org/10.1364/OL.36.001122.
|
[63] |
Hilligsøe KM, Paulsen HN, Thøgersen J, Keiding SR, Larsen JJ. Initial steps of supercontinuum generation in photonic crystal fibers. J Opt Soc Am B. 2003;20(9):1887–93. https://doi.org/10.1364/JOSAB.20.001887.
|
[64] |
Sakamaki K, Nakao M, Naganuma M, Izutsu M. Soliton induced supercontinuum generation in photonic crystal fiber. IEEE J Sel Top Quant. 2004;10(5):876–84. https://doi.org/10.1109/JSTQE.2004.837223.
|
[65] |
Moeser JT, Wolchover NA, Knight JC, Omenetto FG. Initial dynamics of supercontinuum generation in highly nonlinear photonic crystal fiber. Opt Lett. 2007;32(8):952–4. https://doi.org/10.1364/OL.32.000952.
|
[66] |
Cheng T, Kanou Y, Asano K, Deng D, Liao M, Matsumoto M, et al. Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber. Appl Phys Lett. 2014;104(12):662.
|
[67] |
El-Amraoui M, Gadret G, Jules JC, Fatome J, Fortier C, Désévédavy F, et al. Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources. Opt Express. 2010;18(25):26655–65. https://doi.org/10.1364/OE.18.026655.
|
[68] |
Rudy CW, Marandi A, Vodopyanov KL, Byer RL. Octave-spanning supercontinuum generation in in situ tapered As2S3 fiber pumped by a thulium-doped fiber laser. Opt Lett. 2013;38(15):2865–8. https://doi.org/10.1364/OL.38.002865.
|
[69] |
Duval S, Bernier M, Fortin V, Genest J, Piché M, Vallée R. Femtosecond fiber lasers reach the mid-infrared. Optica. 2015;2(7):623–6. https://doi.org/10.1364/OPTICA.2.000623.
|
[70] |
Hudson DD, Antipov S, Li L, Alamgir I, Hu T, Amraoui ME, et al. Toward all-fiber supercontinuum spanning the mid-infrared. Optica. 2017;4(10):1163–6. https://doi.org/10.1364/OPTICA.4.001163.
|
[71] |
Thapa R, Gattass RR, Nguyen V, Chin G, Gibson D, Kim W, et al. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development. Opt Lett. 2015;40(21):5074–7. https://doi.org/10.1364/OL.40.005074.
|
[72] |
Cheng T, Nagasaka K, Tuan TH, Xue X, Matsumoto M, Tezuka H, et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber. Opt Lett. 2016;41(9):2117–20. https://doi.org/10.1364/OL.41.002117.
|
[73] |
Møller U, Yu Y, Kubat I, Petersen CR, Gai X, Brilland L, et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Opt Express. 2015;23(3):3282–91. https://doi.org/10.1364/OE.23.003282.
|
[74] |
Petersen CR, Engelsholm RD, Markos C, Brilland L, Caillaud C, Trolès J, et al. Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers. Opt Express. 2017;25(13):15336–48. https://doi.org/10.1364/OE.25.015336.
|
[75] |
Kubat I, Petersen CR, Møller UV, Seddon AB, Benson T, Brilland L, et al. Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers. Opt Express. 2014;22(4):3959–67. https://doi.org/10.1364/OE.22.003959.
|
[76] |
Petersen CR, Moselund PM, Petersen C, Møller U, Bang O. Spectral-temporal composition matters when cascading supercontinua into the mid-infrared. Opt Express. 2016;24(2):749–58. https://doi.org/10.1364/OE.24.000749.
|
[77] |
Robichaud LR, Fortin V, Gauthier JC, Châtigny S, Couillard JF, Delarosbil JL, et al. Compact 3–8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber. Opt Lett. 2016;41(20):4605–8. https://doi.org/10.1364/OL.41.004605.
|
[78] |
Martinez RA, Plant G, Guo K, Janiszewski B, Freeman MJ, Maynard RL, et al. Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers. Opt Lett. 2018;43(2):296–9. https://doi.org/10.1364/OL.43.000296.
|
[79] |
Woyessa G, Kwarkye K, Dasa MK, Petersen CR, Sidharthan R, Chen S, et al. Power stable 1.5–10.5 μm cascaded mid-infrared supercontinuum laser without thulium amplifier. Opt Lett. 2021;46(5):1129–32. https://doi.org/10.1364/OL.416123.
|
[80] |
Venck S, St-Hilaire F, Brilland L, Ghosh AN, Chahal R, Caillaud C, et al. 2–10 μm mid-infrared fiber-based supercontinuum laser source: experiment and simulation. Laser Photonics Rev. 2020;14(6):2000011. https://doi.org/10.1002/lpor.202000011.
|
[81] |
Petersen CR, Lotz MB, Woyessa G, Ghosh AN, Sylvestre T, Brilland L, et al. Nanoimprinting and tapering of chalcogenide photonic crystal fibers for cascaded supercontinuum generation. Opt Lett. 2019;44(22):5505–8. https://doi.org/10.1364/OL.44.005505.
|
[82] |
Robichaud LR, Duval S, Pleau LP, Fortin V, Bah ST, Châtigny S, et al. High-power supercontinuum generation in the mid-infrared pumped by a soliton self-frequency shifted source. Opt Express. 2020;28(1):107–15. https://doi.org/10.1364/OE.380737.
|
[83] |
Yin K, Zhang B, Yao J, Yang L, Chen S, Hou J. Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers. Opt Lett. 2016;41(5):946–9. https://doi.org/10.1364/OL.41.000946.
|
[84] |
Yang L, Yan B, Zhao R, Wu D, Xu T, Yang P, et al. Ultra-low fusion splicing loss between silica and ZBLAN fiber for all-fiber structured high-power mid-infrared supercontinuum generation. Infrared Phys Techn. 2021;113(103576). https://doi.org/10.1016/j.infrared.2020.103576.
|
[85] |
Curry RJ, Birtwell SW, Mairaj AK, Feng X, Hewak DW. A study of environmental effects on the attenuation of chalcogenide optical fibre. J Non-Cryst Solids. 2005;351(6):477–81. https://doi.org/10.1016/j.jnoncrysol.2004.12.013.
|
[86] |
Wang T, Gai X, Wei W, Wang R, Yang Z, Shen X, et al. Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses. Opt Mater Express. 2014;4(5):1011–22.
|
[87] |
Wei W, Wang R, Shen X, Fang L, Luther-Davies B. Correlation between structural and physical properties in Ge–Sb–se glasses. J Phys Chem C. 2013;117(32):16571–6. https://doi.org/10.1021/jp404001h.
|
[88] |
Ou H, Dai S, Zhang P, Liu Z, Wang X, Chen F, et al. Ultrabroad supercontinuum generated from a highly nonlinear Ge–Sb–se fiber. Opt Lett. 2016;41(14):3201–4. https://doi.org/10.1364/OL.41.003201.
|
[89] |
Zhang B, Yu Y, Zhai C, Qi S, Wang Y, Yang A, et al. High brightness 2.2–12 μm mid-infrared Supercontinuum generation in a nontoxic Chalcogenide step-index Fiber. J Am Ceram Soc. 2016;99(8):2565–8. https://doi.org/10.1111/jace.14391.
|
[90] |
Wilhelm AA, Boussard-Plédel C, Coulombier Q, Lucas J, Bureau B, Lucas P. Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics. Adv Mater. 2007;19(22):3796–800. https://doi.org/10.1002/adma.200700823.
|
[91] |
Yang Z, Lucas P. Tellurium-based far-infrared transmitting glasses. J Am Ceram Soc. 2009;92(12):2920–3. https://doi.org/10.1111/j.1551-2916.2009.03323.x.
|
[92] |
Danto S, Houizot P, Boussard-Pledel C, Zhang XH, Smektala F, Lucas J. A family of far-infrared-transmitting glasses in the Ga–Ge–Te system for space applications. Adv Funct Mater. 2006;16(14):1847–52. https://doi.org/10.1002/adfm.200500645.
|
[93] |
Yuan Y, Yang P, Peng X, Cao Z, Ding S, Zhang N, et al. Ultrabroadband and coherent mid-infrared supercontinuum generation in all-normal dispersion Te-based chalcogenide all-solid microstructured fiber. J. Opt. Soc. Am. B. 2020;37(2):227–32. https://doi.org/10.1364/JOSAB.37.000227.
|
[94] |
Zhang N, Peng X, Wang Y, Dai S, Yuan Y, Su J, et al. Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion. Opt Express. 2019;27(7):10311–9. https://doi.org/10.1364/OE.27.010311.
|
[95] |
Jiao K, Yao J, Zhao Z, Wang X, Si N, Wang X, et al. Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber. Opt Express. 2019;27(3):2036–43. https://doi.org/10.1364/OE.27.002036.
|
[96] |
Zhao Z, Chen P, Wang X, Xue Z, Tian Y, Jiao K, et al. A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion. J Am Ceram Soc. 2019;102(9):5172–9. https://doi.org/10.1111/jace.16439.
|
[97] |
Jiao K, Yao J, Wang X, Wang X, Zhao Z, Zhang B, et al. 1.2–15.2 μm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region. Opt Lett. 2019;44(22):5545–8. https://doi.org/10.1364/OL.44.005545.
|
[98] |
Zhong M, Liang X, Jiao K, Wang X, Si N, Xu T, et al. Low-loss chalcogenide fiber prepared by double peeled-off extrusion. J Lightwave Technol. 2020;38(16):4533–9. https://doi.org/10.1109/JLT.2020.2992291.
|
[99] |
Rothman LS, Gordon IE, Babikov Y, Barbe A, Benner DC, Bernath PF, et al. The HITRAN2012 molecular spectroscopic database. J Quant Spectrosc Radiat Transf. 2013;130:4–50. https://doi.org/10.1016/j.jqsrt.2013.07.002.
|
[100] |
Amiot C, Ryczkowski P, Aalto A, Toivonen J, Genty G. Multi-component gas detection in the mid-IR. SPIE Newsroom. 2015. https://doi.org/10.1117/2.1201510.006199.
|
[101] |
Kilgus J, Duswald K, Langer G, Brandstetter M. Mid-infrared standoff spectroscopy using a supercontinuum laser with compact Fabry-Pérot filter spectrometers. Appl Spectrosc. 2018;72(4):634–42. https://doi.org/10.1177/0003702817746696.
|
[102] |
Kumar M, Islam MN, Terry FL, Freeman MJ, Chan A, Neelakandan M, et al. Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source. Appl Opt. 2012;51(15):2794–807. https://doi.org/10.1364/AO.51.002794.
|