Citation: | Fateh Ullah, Niping Deng, Feng Qiu. Recent progress in electro-optic polymer for ultra-fast communication[J]. PhotoniX. doi: 10.1186/s43074-021-00036-y |
[1] |
Benea-Chelmus I-C, Salamin Y, Settembrini FF, Fedoryshyn Y, Heni W, Elder DL, et al. Electro-optic interface for ultrasensitive intracavity electric field measurements at microwave and terahertz frequencies. Optica. 2020;7(5). https://doi.org/10.1364/optica.384160.
|
[2] |
Spring AM, Qiu F, Hong J, Bannaron A, Cheng X, Yokoyama S. Adamantyl and carbazole containing trans-poly (norbornene-dicarboximide) s as electro-optic chromophore hosts. Polymer. 2019;172:382–90. https://doi.org/10.1016/j.polymer.2019.04.015.
|
[3] |
Ma H, Wu J, Herguth P, Chen B, Jen AK. A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics. Chem Mater. 2000;12(5):1187–9. https://doi.org/10.1021/cm000073h.
|
[4] |
Brambilla G. Optical fibre nanowires and microwires: a review. J Optics-UK. 2010;12(4):043001. https://doi.org/10.1088/2040-8978/12/4/043001.
|
[5] |
Westbrook PS, Kremp T, Feder KS, Taunay TF, Monberg EM, Wu H, et al. Multicore optical fiber grating arrays for sensing applications. Ecoc Eur Conf Opt Commun. 2016;35(6):1248–52. https://doi.org/10.1109/JLT.2017.2661680.
|
[6] |
Luo J, Jen AK. Highly efficient organic electrooptic materials and their hybrid systems for advanced photonic devices. IEEE J Sel Top Quant. 2013;19(6):42–53. https://doi.org/10.1109/jstqe.2013.2268385.
|
[7] |
Oh MC, Zhang H, Zhang C, Erlig H, Chang Y, Tsap B, et al. Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore. IEEE J Sel Top Quant. 2001;7(5):826–35. https://doi.org/10.1109/2944.979344.
|
[8] |
Shi Z, Luo J, Huang S, Polishak BM, Zhou XH, Liff S, et al. Achieving excellent electro-optic activity and thermal stability in poled polymers through an expeditious crosslinking process. J Mater Chem C. 2012;22(3):951–9. https://doi.org/10.1039/C1JM14254B.
|
[9] |
Dalton LR, Sullivan PA, Bale DH. Electric field poled organic electro-optic materials: state of the art and future prospects. Chem Rev. 2010;110(1):25–55. https://doi.org/10.1021/cr9000429.
|
[10] |
Liu JL, Xu GM, Liu FG, Kityk I, Liua XH, Zhen Z. Recent advances in polymer electro-optic modulators. RSC Adv. 2015;5(21):15784–94. https://doi.org/10.1039/c4ra13250e.
|
[11] |
Ding R, Baehr-Jones T, Kim W, Spott A, Fournier M, Fedeli J, et al. Sub-volt silicon-organic electro-optic modulator with 500 mhz bandwidth. J Lightwave Technol. 2011;29(8):1112–7. https://doi.org/10.1109/jlt.2011.2122244.
|
[12] |
Dalton LR. Theory-inspired development of organic electro-optic materials. Thin Solid Films. 2009;518(2):428–31. https://doi.org/10.1016/j.tsf.2009.07.001.
|
[13] |
Shi Z, Hau S, Luo J, Kim TD, Jen KY. Highly efficient diels–alder crosslinkable electro-optic dendrimers for electric-field sensors. Adv Funct Mater. 2007;17(14):2557–63. https://doi.org/10.1002/adfm.200600778.
|
[14] |
Benight SJ, Bale DH, Olbricht BC, Dalton LR. Organic electro-optics: Understanding material structure/function relationships and device fabrication issues. J Mater Chem. 2009;19(40). https://doi.org/10.1039/b905368a.
|
[15] |
Taylor EW, Nichter JE, Nash FD, Haas F, Szep AA, Michalak RJ, et al. Radiation resistance of electro-optic polymer-based modulators. Appl Phys Lett. 2005;86(20):3335. https://doi.org/10.1063/1.1927713.
|
[16] |
Liu J, Ouyang C, Huo F, He W, Cao A. Progress in the enhancement of electro-optic coefficients and orientation stability for organic second-order nonlinear optical materials. Dyes Pigments. 2020;181:108509. https://doi.org/10.1016/j.dyepig.2020.108509.
|
[17] |
Wu JY, Li ZA, Luo JD, Jen AK. High-performance organic second- and third-order nonlinear optical materials for ultrafast information processing. J Mater Chem C C. 2020;8(43):15009–26. https://doi.org/10.1039/d0tc03224g.
|
[18] |
Han XY, Wu ZL, Yang SC, Shen FF, Liang YX, Wang LH, et al. Recent progress of imprinted polymer photonic waveguide devices and applications. Polymers-Basel. 2018;10(6). https://doi.org/10.3390/polymer10060603.
|
[19] |
Hu C, Chen Z, Xiao H, Zhen Z, Liu X, Bo S. Synthesis and characterization of a novel indoline based nonlinear optical chromophore with excellent electro-optic activity and high thermal stability by modifying the π-conjugated bridges. J Mater Chem C C. 2017;5(21):5111–8. https://doi.org/10.1039/c7tc00735c.
|
[20] |
Yang Y, Xu H, Liu F, Wang H, Deng G, Si P, et al. Synthesis and optical nonlinear property of y-type chromophores based on double-donor structures with excellent electro-optic activity. J Mater Chem C C. 2014;2(26):5124–32. https://doi.org/10.1039/c4tc00508b.
|
[21] |
Lei J, Guo C, Liu F, Chen S, Shi WJ, Wang Z, et al. Enhancement of electro-optic properties of nonlinear optical chromophores by introducing pentafluorobenzene group into the donor and π-bridge. Dyes Pigments. 2019;170:107607. https://doi.org/10.1016/j.dyepig.2019.107607.
|
[22] |
Cheng Z, Tang R, Wang R, Xie Y, Chen P, Liu G, et al. Photo-crosslinkable second-order nonlinear optical polymer: facile synthesis and enhanced nlo thermostability. Polym Chem. 2018;9(25):3522–7. https://doi.org/10.1039/c8py00686e.
|
[23] |
Salamin Y, Benea-Chelmus IC, Fedoryshyn Y, Heni W, Elder DL, Dalton LR, et al. Compact and ultra-efficient broadband plasmonic terahertz field detector. Nat Commun. 2019;10(1):5550. https://doi.org/10.1038/s41467-019-13490-x.
|
[24] |
Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W, et al. Low-loss plasmon-assisted electro-optic modulator. Nature. 2018;556(7702):483–6. https://doi.org/10.1038/s41586-018-0031-4.
|
[25] |
Salamin Y, Benea-Chelmus IC, Fedoryshyn Y, Heni W, Leuthold J. Compact and ultra-efficient broadband plasmonic terahertz field detector. Nat Commun. 2019;10(1):5550. https://doi.org/10.1038/s41467-019-13490-x.
|
[26] |
Rau I, Puntus L, Kajzar F. Recent advances with electro-optic polymers. Mol Cryst Liq Cryst. 2019;694(1):73–116. https://doi.org/10.1080/15421406.2020.1723898.
|
[27] |
Wu J, Peng C, Xiao H, Bo S, Qiu L, Zhen Z, et al. Donor modification of nonlinear optical chromophores: synthesis, characterization, and fine-tuning of chromophores’ mobility and steric hindrance to achieve ultra large electro-optic coefficients in guest–host electro-optic materials. Dyes Pigments. 2014;104:15–23. https://doi.org/10.1016/j.dyepig.2013.12.023.
|
[28] |
Liu F, Xiao H, Yang Y, Wang H, Zhang H, Liu J, et al. The design of nonlinear optical chromophores exhibiting large electro-optic activity and high thermal stability: the role of donor groups. Dyes Pigments. 2016;130:138–47. https://doi.org/10.1016/j.dyepig.2016.03.003.
|
[29] |
Huo F, Zhang H, Chen Z, Qiu L, Liu J, Bo S, et al. Novel nonlinear optical push–pull fluorene dyes chromophore as promising materials for telecommunications. J Mater Sci-Mater El. 2019;30(13):12180–5. https://doi.org/10.1007/s10854-019-01576-7.
|
[30] |
Stähelin M, Walsh CA, Burland DM, Miller RD, Twieg RJ, Volksen W. Orientational decay in poled second-order nonlinear optical guest-host polymers: temperature dependence and effects of poling geometry. J Appl Phys. 1993;73(12):8471–9. https://doi.org/10.1063/1.353421.
|
[31] |
Yu F, Spring AM, Li L, Qiu F, Yamamoto K, Maeda D, et al. An enhanced host–guest electro-optical polymer system using poly (norbornene-dicarboximides) via ROMP. Polym Chem. 2013;51(6):1278–84. https://doi.org/10.1002/pola.26505.
|
[32] |
Deng G, Bo S, Zhou T, Zhang R, Liu J, Liu X, et al. Hydrogen-bonded network: an effective approach to improve the thermal stability of organic/polymer electro-optic materials. Sci China Chem. 2013;56(2):169–73. https://doi.org/10.1007/s11426-012-4799-z.
|
[33] |
Ouyang C, Liu J, Liu Q, Li Y, Yan D, Wang Q, et al. Preparation of main-chain polymers based on novel monomers with d−π–a structure for application in organic second-order nonlinear optical materials with good long-term stability. ACS Appl Materr Inter. 2017;9(12):10366–70. https://doi.org/10.1021/acsami.7b00742.
|
[34] |
Xu C, Wu B, Dalton LR, Ranon PM, Shi Y, Steier WH. New random main-chain, second-order nonlinear optical polymers. Macromolecules. 1992;25(24):6716–8. https://doi.org/10.1021/ma00050a052.
|
[35] |
Pan J, Chen M, Warner W, He M, Dalton L, Hogen-Esch TE. Synthesis of block copolymers containing a main chain polymeric nlo segment. Macromolecules. 2000;33(13):4673–81. https://doi.org/10.1021/ma9921201.
|
[36] |
Lin HL, Juang TY, Chan LH, Lee RH, Dai SA, Liu YL, et al. Sequential self-repetitive reaction toward wholly aromatic polyimides with highly stable optical nonlinearity. Polym Chem. 2011;2(3):685–93. https://doi.org/10.1039/c0py00157k.
|
[37] |
Song MY, Jeon B, Lee JY. Synthesis and properties of novel nonlinear optical polyurethane containing dicyanovinylnitroresorcinoxy group. Mol Cryst Liq Cryst. 2013;581(1):83–8. https://doi.org/10.1080/15421406.2013.808557.
|
[38] |
Gubbelmans E, Verbiest T, Van Beylen M, Persoons A, Samyn C. Chromophore-functionalised polymides with high-poling stabilities of the nonlinear optical effect at elevated temperature. Polymer. 2002;43(5):1581–5. https://doi.org/10.1016/S0032-3861(01)00678-4.
|
[39] |
Chen TA, Jen AK, Cai Y. Two-step synthesis of side-chain aromatic polyimides for second-order nonlinear optics. Macromolecules. 1996;29(2):535–9. https://doi.org/10.1021/ma9512566.
|
[40] |
Yu D, Gharavi A, Yu L. A generic approach to functionalizing aromatic polyimides for second-order nonlinear optics. Macromolecules. 1995;28(3):784–6. https://doi.org/10.1021/ma00107a017.
|
[41] |
Samyn C, Van den Broeck K, Verbiest T, Persoons A. (1999) synthesis and nonlinear optical properties of high glass transition polyimides and poly (maleimide-styrene)s. organic thin films for photonic applications. Santa Clara: Optical Society of America; 1999. 3.0.CO;2-K">https://doi.org/10.1002/(SICI)1521-3935(19991201)200:12<2629::AID-MACP2629>3.0.CO;2-K
|
[42] |
Van den Broeck K, Verbiest T, Van Beylen M, Persoons A, Samyn C. Synthesis and nonlinear optical properties of high glass transition polyimides. Macromol Chem Phys. 1999;200(12):2629–35 3.0.CO;2-K">https://doi.org/10.1002/(SICI)1521-3935(19991201)200:12<2629::AID-MACP2629>3.0.CO;2-K.
|
[43] |
Van den Broeck K, Verbiest T, Degryse J, Van Beylen M, Persoons A, Samyn C. High glass transition chromophore functionalised polyimides for second-order nonlinear optical applications. Polymer. 2001;42(8):3315–22. https://doi.org/10.1016/S0032-3861(00)00761-8.
|
[44] |
Qin A, Yang Z, Bai F, Ye C. Design and synthesis of a thermally stable second-order nonlinear optical chromophore and its poled polymers. Polym Chem. 2003;41(18):2846–53. https://doi.org/10.1002/pola.10871.
|
[45] |
Tsai HC, Kuo WJ, Hsiue GH. Highly thermal stable main-chain nonlinear optical polyimide based on two-dimensional carbazole chromophores. Macromol Rapid Comm. 2005;26(12):986–91. https://doi.org/10.1002/marc.200500111.
|
[46] |
Deng G, Bo S, Zhou T, Huang H, Wu J, Liu J, et al. Facile synthesis and electro-optic activities of new polycarbonates containing tricyanofuran-based nonlinear optical chromophores. Macromol Rapid Comm. 2013;51(13):2841–9. https://doi.org/10.1002/pola.26673.
|
[47] |
Singer KD, Kuzyk MG, Holland WR, Sohn JE, Lalama SJ, Comizzoli RB, et al. Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films. Appl Phys Lett. 1988;53(19):1800–2. https://doi.org/10.1063/1.99785.
|
[48] |
Luo J, Haller M, Li HX, Kim TD, Jen AK. Highly efficient and thermally stable electro-optic polymer from a smartly controlled crosslinking process. Adv Mater. 2003;15(19):1635–8. https://doi.org/10.1002/adma.200305202.
|
[49] |
Saadeh H, Wang L, Yu L. A new synthetic approach to novel polymers exhibiting large electrooptic coefficients and high thermal stability. Macromolecules. 2000;33(5):1570–6. https://doi.org/10.1021/ma991097g.
|
[50] |
Jen AK, Wu X, Ma H. High-performance polyquinolines with pendent high-temperature chromophores for second-order nonlinear optics. Chem Mater. 1998;10(2):471–3. https://doi.org/10.1021/cm970739g.
|
[51] |
Chen TA, Jen AK, Cai Y. A novel class of nonlinear optical side-chain polymer: Polyquinolines with large second-order nonlinearity and thermal stability. Chem Mater. 1996;8(3):607–9. https://doi.org/10.1021/cm9505916.
|
[52] |
Lee ES, Kim SM, Yi MH, Ka JW, Oh MC. Coplanar electrode polymer modulators incorporating fluorinated polyimide backbone electro-optic polymer. Photonics-Basel. 2020;7(4):100. https://doi.org/10.3390/photonics7040100.
|
[53] |
Tsutsumi N, Matsumoto O, Sakai W, Kiyotsukuri T. Nonlinear optical polymers. 2. Novel nlo linear polyurethane with dipole moments aligned transverse to the main backbone. Macromolecules. 1996;29(2):592–7. https://doi.org/10.1021/ma951077o.
|
[54] |
Tsutsumi N, Morishima M, Sakai W. Nonlinear optical (NLO) polymers. 3. Nlo polyimide with dipole moments aligned transverse to the imide linkage. Macromolecules. 1998;31(22):7764–9. https://doi.org/10.1021/ma9803436.
|
[55] |
Tirelli N, Altomare A, Solaro R, Ciardelli F, Follonier S, Bosshard C, et al. Structure–activity relationship of new nlo organic materials based on push–pull azodyes: 4. Side chain polymers. Polymer. 2000;41(2):415–21. https://doi.org/10.1016/S0032-3861(99)00202-5.
|
[56] |
Luh TY, Chen RM, Hwu TY, Basu S, Shiau CW, Lin WY, et al. Rational design of polymers for optoelectronic interests pure and applied chemistry. Pure Appl Chem. 2001;73(2):243–6. https://doi.org/10.1351/pac200173020243.
|
[57] |
Campbell D, Dix LR, Rostron P. Synthesis of poly vinyl ethers with pendant non-linear optical azo dyes. Eur Polym J. 1993;29(2):249–53. https://doi.org/10.1016/0014-3057(93)90091-S.
|
[58] |
Ye C, Marks TJ, Yang J, Wong GK. Synthesis of molecular arrays with nonlinear optical properties: second-harmonic generation by covalently functionalized glassy polymers. Macromolecules. 1987;20(9):2322–4. https://doi.org/10.1021/ma00175a051.
|
[59] |
Hayden LM, Sauter GF, Ore FR, Pasillas PL, Hoover JM, Lindsay GA, et al. Second-order nonlinear optical measurements in guest-host and side-chain polymers. J Appl Phys. 1990;68(2):456–65. https://doi.org/10.1063/1.346815.
|
[60] |
Moon KJ, Shim HK, Lee KS, Zieba J, Prasad PN. Synthesis, characterization, and second-order optical nonlinearity of a polyurethane structure functionalized with a hemicyanine dye. Macromolecules. 1996;29(3):861–7. https://doi.org/10.1021/ma950275c.
|
[61] |
Noël C, Gangadhara CKC, Large M, Reyx D, Kajzar F. Synthesis and characterization of polymers containing 4-cyanobiphenyl-based side groups for nonlinear optical applications, 3. Poly(p-chloromethylstyrene) derivatives. Macromol Chem Phys. 1997;198(5):1665–78. https://doi.org/10.1002/macp.1997.021980526.
|
[62] |
Eckl M, Müller H, Strohriegl P, Beckmann S, Etzbach KH, Eich M, et al. Nonlinear optically active polymethacrylates with high glass transition temperatures. Macromol Chem Phys. 1995;196(1):315–25. https://doi.org/10.1002/macp.1995.021960122.
|
[63] |
Strohriegl P, Mueller H, Nuyken O. Novel method for the preparation of polymethacrylates with nonlinear optically active side groups; 1993. https://doi.org/10.1117/12.139171.
|
[64] |
Faccini M, Balakrishnan M, Torosantucci R, Driessen A, Reinhoudt DN, Verboom W. Facile attachment of nonlinear optical chromophores to polycarbonates. Macromolecules. 2008;41(22):8320–3. https://doi.org/10.1021/ma801875w.
|
[65] |
Guo L, Guo Z, Li X. Design and preparation of side chain electro-optic polymeric materials based on novel organic second order nonlinear optical chromophores with double carboxyl groups. J Mater Sci-Mater El. 2018;29(3):2577–84. https://doi.org/10.1007/s10854-017-8181-y.
|
[66] |
Miura H, Qiu F, Spring AM, Kashino T, Kikuchi T, Ozawa M, et al. High thermal stability 40 ghz electro-optic polymer modulators. Opt Express. 2017;25(23):28643–9. https://doi.org/10.1364/OE.25.028643.
|
[67] |
Lu GW, Hong J, Qiu F, Spring AM, Kashino T, Oshima J, et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 gbit s−1 for energy-efficient datacentres and harsh-environment applications. Nat Commun. 2020;11(1):4224. https://doi.org/10.1038/s41467-020-18005-7.
|
[68] |
Tian Y, He Y, Liu P, Zhang H, Zheng Q, Liu J, et al. Mild and in situ photo-crosslinking of anthracene-functionalized poly (aryl ether ketone) for enhancing temporal stability of organic NLO materials. J Mater Sci. 2021;56(9):5910–23. https://doi.org/10.1007/s10853-020-05594-3.
|
[69] |
McElhanon JR, Wheeler DR. Thermally responsive dendrons and dendrimers based on reversible furan-maleimide diels−alder adducts. Org Lett. 2001;3(17):2681–3. https://doi.org/10.1021/ol0101281.
|
[70] |
Gheneim R, Perez-Berumen C, Gandini A. Diels−alder reactions with novel polymeric dienes and dienophiles: synthesis of reversibly cross-linked elastomers. Macromolecules. 2002;35(19):7246–53. https://doi.org/10.1021/ma020343c.
|
[71] |
Liu J, Wang L, Zhen Z, Liu X. Synthesis of novel polyarylate with elecrooptical chromophores as side chain as electro-optic host polymer. Colloid Polym Sci. 2012;290(12):1215–20. https://doi.org/10.1007/s00396-012-2695-x.
|
[72] |
Kim TD, Luo J, Tian Y, Ka JW, Tucker NM, Haller M, et al. Diels−alder “click chemistry” for highly efficient electrooptic polymers. Macromolecules. 2006;39(5):1676–80. https://doi.org/10.1021/ma052087k.
|
[73] |
Shi Z, Cui YZ, Huang S, Li Z, Luo J, Jen AK. Dipolar chromophore facilitated huisgen cross-linking reactions for highly efficient and thermally stable electrooptic polymers. ACS Macro Lett. 2012;1(7):793–6. https://doi.org/10.1021/mz300189p.
|
[74] |
Cabanetos C, Bentoumi W, Silvestre V, Blart E, Pellegrin Y, Montembault V, et al. New cross-linkable polymers with huisgen reaction incorporating high μβ chromophores for second-order nonlinear optical applications. Chem Mater. 2012;24(6):1143–57. https://doi.org/10.1021/cm203590t.
|
[75] |
Chen Z, Bo S, Qiu L, Zhen Z, Liu X. Synthesis and optical properties of a crosslinkable polymer system containing tricyanofuran-based chromophores with excellent electro-optic activity and thermal stability. Polym Int. 2012;61(9):1376–81. https://doi.org/10.1002/pi.4216.
|
[76] |
Zhang C, Wang C, Yang J, Dalton LR, Sun G, Zhang H, et al. Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: role of cross-linking and monomer rigidity. Macromolecules. 2001;34(2):235–43. https://doi.org/10.1021/ma0011688.
|