Turn off MathJax
Article Contents
Daniel D. A. Clarke, Ortwin Hess. Near-field strong coupling and entanglement of quantum emitters for room-temperature quantum technologies[J]. PhotoniX. doi: 10.1186/s43074-024-00148-1
Citation: Daniel D. A. Clarke, Ortwin Hess. Near-field strong coupling and entanglement of quantum emitters for room-temperature quantum technologies[J]. PhotoniX. doi: 10.1186/s43074-024-00148-1

Near-field strong coupling and entanglement of quantum emitters for room-temperature quantum technologies

doi: 10.1186/s43074-024-00148-1
Funds:  DDAC and OH gratefully acknowledge funding from Science Foundation Ireland via Grant No. 18/RP/6236.
  • Received Date: 2024-05-12
  • Accepted Date: 2024-09-29
  • Rev Recd Date: 2024-08-12
  • Available Online: 2024-10-18
  • In recent years, quantum nanophotonics has forged a rich nexus of nanotechnology with photonic quantum information processing, offering remarkable prospects for advancing quantum technologies beyond their current technical limits in terms of physical compactness, energy efficiency, operation speed, temperature robustness and scalability. In this perspective, we highlight a number of recent studies that reveal the especially compelling potential of nanoplasmonic cavity quantum electrodynamics for driving quantum technologies down to nanoscale spatial and ultrafast temporal regimes, whilst elevating them to ambient temperatures. Our perspective encompasses innovative proposals for quantum plasmonic biosensing, driving ultrafast single-photon emission and achieving near-field multipartite entanglement in the strong coupling regime, with a notable emphasis on the use of industry-grade devices. We conclude with an outlook emphasizing how the bespoke characteristics and functionalities of plasmonic devices are shaping contemporary research directives in ultrafast and room-temperature quantum nanotechnologies.
  • loading
  • [1]
    Mabuchi H, Doherty AC. Cavity quantum electrodynamics: Coherence in context. Science. 2002;298(5597):1372–7.
    [2]
    Walls DF, Milburn GJ. Quantum Optics. Berlin: Springer-Verlag; 2008.
    [3]
    Wallraff A, Schuster DI, Blais A, Frunzio L, Huang RS, Majer J, Kumar S, Girvin SM, Schoelkopf RJ. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature. 2004;431(7005):162–7.
    [4]
    Bello F, Kongsuwan N, Donegan JF, Hess O. Controlled cavity-free, singlephoton emission and bipartite entanglement of near-field-excited quantum emitters. Nano Lett. 2020;20(8):5830–6.
    [5]
    Volz T, Reinhard A, Winger M, Badolato A, Hennessy KJ, Hu EL, Imamoğlu A. Ultrafast all-optical switching by single photons. Nat Photonics. 2012;6(9):605–9.
    [6]
    Kongsuwan N, Xiong X, Bai P, You JB, Png CE, Wu L, Hess O. Quantum plasmonic immunoassay sensing. Nano Lett. 2019;19(9):5853–61.
    [7]
    Baranov DG, Wersäll M, Cuadra J, Antosiewicz TJ, Shegai T. Novel nanostructures and materials for strong lightmatter interactions. ACS Photonics. 2018;5(1):24–42.
    [8]
    Baumberg JJ, Aizpurua J, Mikkelsen MH, Smith DR. Extreme nanophotonics from ultrathin metallic gaps. Nat Mater. 2019;18(7):668–78.
    [9]
    Chikkaraddy R, De Nijs B, Benz F, Barrow SJ, Scherman OA, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg JJ. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 2016;535(7610):127–30.
    [10]
    Santhosh K, Bitton O, Chuntonov L, Haran G. Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat Commun. 2016;7(1):1–5.
    [11]
    Groß H, Hamm J.M, Tufarelli T, Hess O, Hecht B. Near-field strong coupling of single quantum dots. Sci Adv. 2018;4(3):eaar4906.
    [12]
    Park KD, May MA, Leng H, Wang J, Kropp JA, Gougousi T, Pelton M, Raschke MB. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. Sci Adv. 2019;5(7):eaav5931.
    [13]
    Xiong X, Kongsuwan N, Lai Y, Png CE, Wu L, Hess O. Room-temperature plexcitonic strong coupling: Ultrafast dynamics for quantum applications. Appl Phys Lett. 2021;118(13): 130501.
    [14]
    Xiong X, Lai Y, Clarke D, Kongsuwan N, Dong Z, Bai P, Png CE, Wu L, Hess O. Control of plexcitonic strong coupling via substrate-mediated hotspot nanoengineering. Advanced Optical Materials. 2022;10(17):2200557.
    [15]
    Xiong X, Clarke D, Lai Y, Bai P, Png CE, Wu L, Hess O. Substrate engineering of plasmonic nanocavity antenna modes. Opt Express. 2023;31(2):2345–58.
    [16]
    Bello FD, Kongsuwan N, Hess O. Near-field generation and control of ultrafast, multipartite entanglement for quantum nanoplasmonic networks. Nano Lett. 2022;22(7):2801–8.
    [17]
    Horodecki R, Horodecki P, Horodecki M, Horodecki K. Quantum entanglement. Rev Mod Phys. 2009;81:865–942.
    [18]
    Wu X, Jiang P, Razinskas G, Huo Y, Zhang H, Kamp M, Rastelli A, Schmidt OG, Hecht B, Lindfors K, Lippitz M. On-chip single-plasmon nanocircuit driven by a self-assembled quantum dot. Nano Lett. 2017;17(7):4291–6.
    [19]
    Ochs M, Zurak L, Krauss E, Meier J, Emmerling M, Kullock R, Hecht B. Nanoscale electrical excitation of distinct modes in plasmonic waveguides. Nano Lett. 2021;21(10):4225–30.
    [20]
    Dombi P, Pápa Z, Vogelsang J, Yalunin SV, Sivis M, Herink G, Schäfer S, Groß P, Ropers C, Lienau C. Strong-field nano-optics. Rev Mod Phys. 2020;92: 025003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return