Citation: | Runze Zhu, Lizhi Chen, Jiasheng Xiao, Hao Zhang. Three-dimensional computer holography with phase space tailoring[J]. PhotoniX. doi: 10.1186/s43074-024-00149-0 |
[1] |
Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature. 2000;404(6773):53–6.
|
[2] |
Pégard NC, Mardinly AR, Oldenburg IA, Sridharan S, Waller L, Adesnik H. Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT). Nat Commun. 2017;8(1):1228.
|
[3] |
Reutsky-Gefen I, Golan L, Farah N, Schejter A, Tsur L, Brosh I, et al. Holographic optogenetic stimulation of patterned neuronal activity for vision restoration. Nat Commun. 2013;4(1):1509.
|
[4] |
Curtis JE, Koss BA, Grier DG. Dynamic holographic optical tweezers. Opt Commun. 2002;207(1–6):169–75.
|
[5] |
Di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays. Opt Express. 2007;15(4): 1913.
|
[6] |
Chang C, Bang K, Wetzstein G, Lee B, Gao L. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica. 2020;7(11):1563–78.
|
[7] |
Yu H, Lee K, Park J, Park Y. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nat Photonics. 2017;11(3):186–92.
|
[8] |
Pi D, Liu J, Wang Y. Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display. Light Sci Appl. 2022;11(1):231.
|
[9] |
Zhan T, Xiong J, Zou J, Wu S-T. Multifocal displays: review and prospect. PhotoniX. 2020;1(1):10.
|
[10] |
Xiong J, Zhong H, Cheng D, Wu S-T, Wang Y. Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing. PhotoniX. 2023;4(1):35.
|
[11] |
Wang D, Li Y-L, Chu F, Li N-N, Li Z-S, Lee S-D, et al. Color liquid crystal grating based color holographic 3D display system with large viewing angle. Light Sci Appl. 2024;13(1):16.
|
[12] |
Lesem LB, Hirsch PM, Jordan JA. The kinoform: a new wavefront reconstruction device. IBM J Res Dev. 1969;13(2):150–5.
|
[13] |
Shimobaba T, Kakue T, Real-time IT, low speckle holographic projection. IEEE 13th Int. Conf. Ind. Inform. INDIN, Cambridge, United Kingdom: IEEE. Cambridge. 2015;2015:732–41.
|
[14] |
Zhang H, Cao L, Jin G. Computer-generated hologram with occlusion effect using layer-based processing. Appl Opt. 2017;56(13):F138–43.
|
[15] |
Shimobaba T, Kakue T, Ito T. Review of fast algorithms and hardware implementations on computer holography. IEEE Trans Ind Inform. 2016;12(4):1611–22.
|
[16] |
Zhang H, Zhao Y, Cao L, Jin G. Layered holographic stereogram based on inverse Fresnel diffraction. Appl Opt. 2016;55(3):A154–9.
|
[17] |
Hsueh CK, Sawchuk AA. Computer-generated double-phase holograms. Appl Opt. 1978;17(24):3874–83.
|
[18] |
Qi Y, Chang C, Xia J. Speckleless holographic display by complex modulation based on double-phase method. Opt Express. 2016;24(26):30368–78.
|
[19] |
Maimone A, Georgiou A, Kollin JS. Holographic near-eye displays for virtual and augmented reality. ACM Trans Graph. 2017;36(4):1–16.
|
[20] |
Shi L, Li B, Kim C, Kellnhofer P, Matusik W. Towards real-time photorealistic 3D holography with deep neural networks. Nature. 2021;591(7849):234–9.
|
[21] |
Gerchberg RW. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik. 1972;35:237–46.
|
[22] |
Fienup JR. Phase retrieval algorithms: a comparison. Appl Opt. 1982;21(15): 2758.
|
[23] |
Peng Y, Dun X, Sun Q, Heidrich W. Mix-and-match holography. ACM Trans Graph. 2017;36(6):191–201.
|
[24] |
Matsushima K, Shimobaba T. Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields. Optics Express. 2009;12:19662–73.
|
[25] |
Chen L, Tian S, Zhang H, Cao L, Jin G. Phase hologram optimization with bandwidth constraint strategy for speckle-free optical reconstruction. Opt Express. 2021;29(8):11645–63.
|
[26] |
Madsen AEG, Eriksen RL, Glückstad J. Comparison of state-of-the-art Computer Generated Holography algorithms and a machine learning approach. Opt Commun. 2022;505: 127590.
|
[27] |
Peng Y, Choi S, Padmanaban N, Wetzstein G. Neural holography with camera-in-the-loop training. ACM Trans Graph. 2020;39(6):185.
|
[28] |
Chen C, Kim D, Yoo D, Lee B, Lee B. Off-axis camera-in-the-loop optimization with noise reduction strategy for high-quality hologram generation. Opt Lett. 2022;47(4):790–3.
|
[29] |
Zhang J, Pégard N, Zhong J, Adesnik H, Waller L. 3D computer-generated holography by non-convex optimization. Optica. 2017;4(10):1306–13.
|
[30] |
Chen C, Lee B, Li N-N, Chae M, Wang D, Wang Q-H, et al. Multi-depth hologram generation using stochastic gradient descent algorithm with complex loss function. Opt Express. 2021;29(10):15089–103.
|
[31] |
Makey G, Yavuz Ö, Kesim DK, Turnalı A, Elahi P, Ilday S, et al. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nat Photonics. 2019;13(4):251–6.
|
[32] |
Choi S, Gopakumar M, Peng Y, Kim J, Wetzstein G. Neural 3D holography: learning accurate wave propagation models for 3D holographic virtual and augmented reality displays. ACM Trans Graph. 2021;40(6):240.
|
[33] |
Gopakumar M, Lee G-Y, Choi S, Chao B, Peng Y, Kim J, et al. Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature. 2024;629(8013):791–7.
|
[34] |
Choi S, Gopakumar M, Peng Y, Kim J, O’Toole M, Wetzstein G. Time-multiplexed neural holography: a flexible framework for holographic near-eye displays with fast heavily-quantized spatial light modulators. ACM SIGGRAPH 2022 Conf. Proc., 2022, p. 1–9.
|
[35] |
Lee B, Kim D, Lee S, Chen C, Lee B. High-contrast, speckle-free, true 3D holography via binary CGH optimization. Sci Rep. 2022;12(1):2811.
|
[36] |
Liu S-B, Xie B-K, Yuan R-Y, Zhang M-X, Xu J-C, Li L, et al. Deep learning enables parallel camera with enhanced- resolution and computational zoom imaging. PhotoniX. 2023;4(1):17.
|
[37] |
Zhang Y, Wang Y, Wang M, Guo Y, Li X, Chen Y, et al. Multi-focus light-field microscopy for high-speed large-volume imaging. PhotoniX. 2022;3(1):30.
|
[38] |
Wang D, Li Z-S, Zheng Y, Zhao Y-R, Liu C, Xu J-B, et al. Liquid lens based holographic camera for real 3D scene hologram acquisition using end-to-end physical model-driven network. Light Sci Appl. 2024;13(1):62.
|
[39] |
Shi L, Li B, Matusik W. End-to-end learning of 3D phase-only holograms for holographic display. Light Sci Appl. 2022;11(1):247.
|
[40] |
Liu K, Wu J, He Z, Cao L. State key laboratory of precision measurement technology and instruments, department of precision instruments, Tsinghua University, Beijing 100084, China. 4K-DMDNet: diffraction model-driven network for 4K computer-generated holography. Opto-Electron Adv. 2023;6(5):220135.
|
[41] |
Alonso MA. Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles. Adv Opt Photonics. 2011;3(4):272–365.
|
[42] |
Xiao J, Zhang W, Zhang H. Sampling analysis for Fresnel diffraction fields based on phase space representation. J Opt Soc Am A. 2022;39(2):A15-28.
|
[43] |
Zhang W, Zhang H, Sheppard CJR, Jin G. Analysis of numerical diffraction calculation methods: from the perspective of phase space optics and the sampling theorem. J Opt Soc Am A. 2020;37(11):1748–66.
|
[44] |
Zhang H, Xiao J, Chen L, Zhu R. Computer Holography Based on Phase Space Analysis. Digit. Hologr. Three-Dimens. Imaging 2022, Optica Publishing Group, Cambridge; 2022, p. M6A.5.
|
[45] |
Wigner E. On the quantum correction for thermodynamic equilibrium. Phys Rev. 1932;40(5):749–59.
|
[46] |
Bastiaans MJ. Wigner distribution function and its application to first-order optics. J Opt Soc Am. 1979;69(12):1710–6.
|
[47] |
Wyrowski F, Bryngdahl O. Iterative Fourier-transform algorithm applied to computer holography. J Opt Soc Am A. 1988;5(7):1058–65.
|
[48] |
Senthilkumaran P, Wyrowski F. Phase synthesis in wave-optical engineering: mapping- and diffuser-type approaches. J Mod Opt. 2002;49(11):1831–50.
|
[49] |
Senthilkumaran P, Wyrowski F, Schimmel H. Vortex Stagnation problem in iterative Fourier transform algorithms. Opt Lasers Eng. 2005;43(1):43–56.
|
[50] |
Chen L, Zhang H, He Z, Wang X, Cao L, Jin G. Weighted Constraint Iterative Algorithm for Phase Hologram Generation. Appl Sci. 2020;10(10): 3652.
|
[51] |
Zhao Y, Cao L, Zhang H, Kong D, Jin G. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt Express. 2015;23(20):25440–9.
|
[52] |
Agustsson E, Timofte RNTIRE. Challenge on Single Image Super-Resolution: Dataset and Study. 2017 IEEE Conf. Comput. Vis. Pattern Recognit. Workshop CVPRW, Honolulu, HI, USA: IEEE. Honolulu. 2017;2017:1122–31.
|
[53] |
Lee S, Kim D, Nam S-W, Lee B, Cho J, Lee B. Light source optimization for partially coherent holographic displays with consideration of speckle contrast, resolution, and depth of field. Sci Rep. 2020;10(1):18832.
|
[54] |
Chen L, Zhu R, Zhang H. Speckle-free compact holographic near-eye display using camera-in-the-loop optimization with phase constraint. Opt Express. 2022;30(26):46649.
|
[55] |
Basistiy IV, Soskin MS, Vasnetsov MV. Optical wavefront dislocations and their properties. Opt Commun. 1995;119(5–6):604–12.
|
[56] |
Nye JF, Berry MV. Dislocations in wave trains. Proc R Soc Lond Math Phys Sci. 1974;336(1605):165–90.
|