Turn off MathJax
Article Contents
Runze Zhu, Lizhi Chen, Jiasheng Xiao, Hao Zhang. Three-dimensional computer holography with phase space tailoring[J]. PhotoniX. doi: 10.1186/s43074-024-00149-0
Citation: Runze Zhu, Lizhi Chen, Jiasheng Xiao, Hao Zhang. Three-dimensional computer holography with phase space tailoring[J]. PhotoniX. doi: 10.1186/s43074-024-00149-0

Three-dimensional computer holography with phase space tailoring

doi: 10.1186/s43074-024-00149-0
Funds:  National Natural Science Foundation of China (NSFC) 62035003. National Key Research and Development Program of China No.2021YFB2802100.
  • Received Date: 2024-05-27
  • Accepted Date: 2024-09-29
  • Rev Recd Date: 2024-09-22
  • Available Online: 2024-10-22
  • Computer holography is a prominent technique for reconstructing customized three-dimensional (3D) diffraction fields. However, the quality of optical reconstruction remains a fundamental challenge in 3D computer holography, especially for the 3D diffraction fields with physically continuous and extensive depth range. Here, we propose a 3D computer-generated hologram (CGH) optimization framework with phase space tailoring. Based on phase space analysis of the space and frequency properties in both lateral and axial directions, the intensity of the 3D diffraction field is adequately sampled across a large depth range. This sampling ensures the reconstructed intensity distribution to be comprehensively constrained with physical consistency. A physics-informed loss function is constructed based on the phase space tailoring to optimize the CGH with suppression of vortex stagnation. Numerical and optical experiments demonstrate the proposed method significantly enhances the 3D optical reconstructions with suppressed speckle noise across a continuous and extensive depth range.
  • loading
  • [1]
    Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature. 2000;404(6773):53–6.
    [2]
    Pégard NC, Mardinly AR, Oldenburg IA, Sridharan S, Waller L, Adesnik H. Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT). Nat Commun. 2017;8(1):1228.
    [3]
    Reutsky-Gefen I, Golan L, Farah N, Schejter A, Tsur L, Brosh I, et al. Holographic optogenetic stimulation of patterned neuronal activity for vision restoration. Nat Commun. 2013;4(1):1509.
    [4]
    Curtis JE, Koss BA, Grier DG. Dynamic holographic optical tweezers. Opt Commun. 2002;207(1–6):169–75.
    [5]
    Di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays. Opt Express. 2007;15(4): 1913.
    [6]
    Chang C, Bang K, Wetzstein G, Lee B, Gao L. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica. 2020;7(11):1563–78.
    [7]
    Yu H, Lee K, Park J, Park Y. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nat Photonics. 2017;11(3):186–92.
    [8]
    Pi D, Liu J, Wang Y. Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display. Light Sci Appl. 2022;11(1):231.
    [9]
    Zhan T, Xiong J, Zou J, Wu S-T. Multifocal displays: review and prospect. PhotoniX. 2020;1(1):10.
    [10]
    Xiong J, Zhong H, Cheng D, Wu S-T, Wang Y. Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing. PhotoniX. 2023;4(1):35.
    [11]
    Wang D, Li Y-L, Chu F, Li N-N, Li Z-S, Lee S-D, et al. Color liquid crystal grating based color holographic 3D display system with large viewing angle. Light Sci Appl. 2024;13(1):16.
    [12]
    Lesem LB, Hirsch PM, Jordan JA. The kinoform: a new wavefront reconstruction device. IBM J Res Dev. 1969;13(2):150–5.
    [13]
    Shimobaba T, Kakue T, Real-time IT, low speckle holographic projection. IEEE 13th Int. Conf. Ind. Inform. INDIN, Cambridge, United Kingdom: IEEE. Cambridge. 2015;2015:732–41.
    [14]
    Zhang H, Cao L, Jin G. Computer-generated hologram with occlusion effect using layer-based processing. Appl Opt. 2017;56(13):F138–43.
    [15]
    Shimobaba T, Kakue T, Ito T. Review of fast algorithms and hardware implementations on computer holography. IEEE Trans Ind Inform. 2016;12(4):1611–22.
    [16]
    Zhang H, Zhao Y, Cao L, Jin G. Layered holographic stereogram based on inverse Fresnel diffraction. Appl Opt. 2016;55(3):A154–9.
    [17]
    Hsueh CK, Sawchuk AA. Computer-generated double-phase holograms. Appl Opt. 1978;17(24):3874–83.
    [18]
    Qi Y, Chang C, Xia J. Speckleless holographic display by complex modulation based on double-phase method. Opt Express. 2016;24(26):30368–78.
    [19]
    Maimone A, Georgiou A, Kollin JS. Holographic near-eye displays for virtual and augmented reality. ACM Trans Graph. 2017;36(4):1–16.
    [20]
    Shi L, Li B, Kim C, Kellnhofer P, Matusik W. Towards real-time photorealistic 3D holography with deep neural networks. Nature. 2021;591(7849):234–9.
    [21]
    Gerchberg RW. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik. 1972;35:237–46.
    [22]
    Fienup JR. Phase retrieval algorithms: a comparison. Appl Opt. 1982;21(15): 2758.
    [23]
    Peng Y, Dun X, Sun Q, Heidrich W. Mix-and-match holography. ACM Trans Graph. 2017;36(6):191–201.
    [24]
    Matsushima K, Shimobaba T. Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields. Optics Express. 2009;12:19662–73.
    [25]
    Chen L, Tian S, Zhang H, Cao L, Jin G. Phase hologram optimization with bandwidth constraint strategy for speckle-free optical reconstruction. Opt Express. 2021;29(8):11645–63.
    [26]
    Madsen AEG, Eriksen RL, Glückstad J. Comparison of state-of-the-art Computer Generated Holography algorithms and a machine learning approach. Opt Commun. 2022;505: 127590.
    [27]
    Peng Y, Choi S, Padmanaban N, Wetzstein G. Neural holography with camera-in-the-loop training. ACM Trans Graph. 2020;39(6):185.
    [28]
    Chen C, Kim D, Yoo D, Lee B, Lee B. Off-axis camera-in-the-loop optimization with noise reduction strategy for high-quality hologram generation. Opt Lett. 2022;47(4):790–3.
    [29]
    Zhang J, Pégard N, Zhong J, Adesnik H, Waller L. 3D computer-generated holography by non-convex optimization. Optica. 2017;4(10):1306–13.
    [30]
    Chen C, Lee B, Li N-N, Chae M, Wang D, Wang Q-H, et al. Multi-depth hologram generation using stochastic gradient descent algorithm with complex loss function. Opt Express. 2021;29(10):15089–103.
    [31]
    Makey G, Yavuz Ö, Kesim DK, Turnalı A, Elahi P, Ilday S, et al. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nat Photonics. 2019;13(4):251–6.
    [32]
    Choi S, Gopakumar M, Peng Y, Kim J, Wetzstein G. Neural 3D holography: learning accurate wave propagation models for 3D holographic virtual and augmented reality displays. ACM Trans Graph. 2021;40(6):240.
    [33]
    Gopakumar M, Lee G-Y, Choi S, Chao B, Peng Y, Kim J, et al. Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature. 2024;629(8013):791–7.
    [34]
    Choi S, Gopakumar M, Peng Y, Kim J, O’Toole M, Wetzstein G. Time-multiplexed neural holography: a flexible framework for holographic near-eye displays with fast heavily-quantized spatial light modulators. ACM SIGGRAPH 2022 Conf. Proc., 2022, p. 1–9.
    [35]
    Lee B, Kim D, Lee S, Chen C, Lee B. High-contrast, speckle-free, true 3D holography via binary CGH optimization. Sci Rep. 2022;12(1):2811.
    [36]
    Liu S-B, Xie B-K, Yuan R-Y, Zhang M-X, Xu J-C, Li L, et al. Deep learning enables parallel camera with enhanced- resolution and computational zoom imaging. PhotoniX. 2023;4(1):17.
    [37]
    Zhang Y, Wang Y, Wang M, Guo Y, Li X, Chen Y, et al. Multi-focus light-field microscopy for high-speed large-volume imaging. PhotoniX. 2022;3(1):30.
    [38]
    Wang D, Li Z-S, Zheng Y, Zhao Y-R, Liu C, Xu J-B, et al. Liquid lens based holographic camera for real 3D scene hologram acquisition using end-to-end physical model-driven network. Light Sci Appl. 2024;13(1):62.
    [39]
    Shi L, Li B, Matusik W. End-to-end learning of 3D phase-only holograms for holographic display. Light Sci Appl. 2022;11(1):247.
    [40]
    Liu K, Wu J, He Z, Cao L. State key laboratory of precision measurement technology and instruments, department of precision instruments, Tsinghua University, Beijing 100084, China. 4K-DMDNet: diffraction model-driven network for 4K computer-generated holography. Opto-Electron Adv. 2023;6(5):220135.
    [41]
    Alonso MA. Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles. Adv Opt Photonics. 2011;3(4):272–365.
    [42]
    Xiao J, Zhang W, Zhang H. Sampling analysis for Fresnel diffraction fields based on phase space representation. J Opt Soc Am A. 2022;39(2):A15-28.
    [43]
    Zhang W, Zhang H, Sheppard CJR, Jin G. Analysis of numerical diffraction calculation methods: from the perspective of phase space optics and the sampling theorem. J Opt Soc Am A. 2020;37(11):1748–66.
    [44]
    Zhang H, Xiao J, Chen L, Zhu R. Computer Holography Based on Phase Space Analysis. Digit. Hologr. Three-Dimens. Imaging 2022, Optica Publishing Group, Cambridge; 2022, p. M6A.5.
    [45]
    Wigner E. On the quantum correction for thermodynamic equilibrium. Phys Rev. 1932;40(5):749–59.
    [46]
    Bastiaans MJ. Wigner distribution function and its application to first-order optics. J Opt Soc Am. 1979;69(12):1710–6.
    [47]
    Wyrowski F, Bryngdahl O. Iterative Fourier-transform algorithm applied to computer holography. J Opt Soc Am A. 1988;5(7):1058–65.
    [48]
    Senthilkumaran P, Wyrowski F. Phase synthesis in wave-optical engineering: mapping- and diffuser-type approaches. J Mod Opt. 2002;49(11):1831–50.
    [49]
    Senthilkumaran P, Wyrowski F, Schimmel H. Vortex Stagnation problem in iterative Fourier transform algorithms. Opt Lasers Eng. 2005;43(1):43–56.
    [50]
    Chen L, Zhang H, He Z, Wang X, Cao L, Jin G. Weighted Constraint Iterative Algorithm for Phase Hologram Generation. Appl Sci. 2020;10(10): 3652.
    [51]
    Zhao Y, Cao L, Zhang H, Kong D, Jin G. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt Express. 2015;23(20):25440–9.
    [52]
    Agustsson E, Timofte RNTIRE. Challenge on Single Image Super-Resolution: Dataset and Study. 2017 IEEE Conf. Comput. Vis. Pattern Recognit. Workshop CVPRW, Honolulu, HI, USA: IEEE. Honolulu. 2017;2017:1122–31.
    [53]
    Lee S, Kim D, Nam S-W, Lee B, Cho J, Lee B. Light source optimization for partially coherent holographic displays with consideration of speckle contrast, resolution, and depth of field. Sci Rep. 2020;10(1):18832.
    [54]
    Chen L, Zhu R, Zhang H. Speckle-free compact holographic near-eye display using camera-in-the-loop optimization with phase constraint. Opt Express. 2022;30(26):46649.
    [55]
    Basistiy IV, Soskin MS, Vasnetsov MV. Optical wavefront dislocations and their properties. Opt Commun. 1995;119(5–6):604–12.
    [56]
    Nye JF, Berry MV. Dislocations in wave trains. Proc R Soc Lond Math Phys Sci. 1974;336(1605):165–90.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (13) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return