Turn off MathJax
Article Contents
Anja Agneter, Paul Muellner, Quang Nguyen, Dana Seyringer, Elisabet A. Rank, Marko Vlaskovic, Jochen Kraft, Martin Sagmeister, Stefan Nevlacsil, Moritz Eggeling, Alejandro Maese-Novo, Yevhenii Morozov, Nicole Schmitner, Robin A. Kimmel, Ernst Bodenstorfer, Pietro Cipriano, Horst Zimmermann, Rainer A. Leitgeb, Rainer Hainberger, Wolfgang Drexler. CMOS optoelectronic spectrometer based on photonic integrated circuit for in vivo 3D optical coherence tomography[J]. PhotoniX. doi: 10.1186/s43074-024-00150-7
Citation: Anja Agneter, Paul Muellner, Quang Nguyen, Dana Seyringer, Elisabet A. Rank, Marko Vlaskovic, Jochen Kraft, Martin Sagmeister, Stefan Nevlacsil, Moritz Eggeling, Alejandro Maese-Novo, Yevhenii Morozov, Nicole Schmitner, Robin A. Kimmel, Ernst Bodenstorfer, Pietro Cipriano, Horst Zimmermann, Rainer A. Leitgeb, Rainer Hainberger, Wolfgang Drexler. CMOS optoelectronic spectrometer based on photonic integrated circuit for in vivo 3D optical coherence tomography[J]. PhotoniX. doi: 10.1186/s43074-024-00150-7

CMOS optoelectronic spectrometer based on photonic integrated circuit for in vivo 3D optical coherence tomography

doi: 10.1186/s43074-024-00150-7
Funds:  We thank Martin Distel (Children’s Cancer Research Institute, Vienna, Austria) for providing zebrafish larvae and his support and advice in handling them. We thank Marco Andreana for his support in the sample preparation of the zebrafish larvae. We also thank Laurin Ginner and Andreas Lange for advice and assistance with the frame grabber.
  • Received Date: 2024-07-18
  • Accepted Date: 2024-10-07
  • Rev Recd Date: 2024-09-30
  • Available Online: 2024-10-11
  • Photonic integrated circuits (PICs) represent a promising technology for the much-needed medical devices of today. Their primary advantage lies in their ability to integrate multiple functions onto a single chip, thereby reducing the complexity, size, maintenance requirements, and costs. When applied to optical coherence tomography (OCT), the leading tool for state-of-the-art ophthalmic diagnosis, PICs have the potential to increase accessibility, especially in scenarios, where size, weight, or costs are limiting factors. In this paper, we present a PIC-based CMOS-compatible spectrometer for spectral domain OCT with an unprecedented level of integration. To achieve this, we co-integrated a 512-channel arrayed waveguide grating with electronics. We successfully addressed the challenge of establishing a connection from the optical waveguides to the photodiodes monolithically co-integrated on the chip with minimal losses achieving a coupling efficiency of 70%. With this fully integrated PIC-based spectrometer interfaced to a spectral domain OCT system, we reached a sensitivity of 92dB at an imaging speed of 55kHz, with a 6dB signal roll-off occurring at 2mm. We successfully applied this innovative technology to obtain 3D in vivo tomograms of zebrafish larvae and human skin. This ground-breaking fully integrated spectrometer represents a significant step towards a miniaturised, cost-effective, and maintenance-free OCT system.
  • loading
  • [1]
    Sancho-Durá J, Zinoviev K, Lloret-Soler J, Rubio-Guviernau JL, Margallo-Balbás E, Drexler W. Handheld multi-modal imaging for point-of-care skin diagnosis based on akinetic integrated optics optical coherence tomography. J Biophoton. 2018;11(10):e201800193. https://doi.org/10.1002/jbio.201800193.
    [2]
    Xiang C, Jin W, Bowers JE. Silicon nitride passive and active photonic integrated circuits: trends and prospects. Photon Res. 2022;10(6):A82. https://doi.org/10.1364/prj.452936.
    [3]
    Drexler W, Fujimoto JG. Optical Coherence Tomography. Switzerland: Springer International Publishing; 2015. https://doi.org/10.1007/978-3-319-06419-2.
    [4]
    Sattler E, Kästle R, Welzel J. Optical coherence tomography in dermatology. J Biomed Opt. 2013;18(6):061224. https://doi.org/10.1117/1.jbo.18.6.061224.
    [5]
    Welzel J, Noack J, Lankenau E, Engelhardt R. Optical Coherence Tomography in Dermatology. In: Handbook of Optical Coherence Tomography. Luebeck: CRC Press; 2001. pp. 539–61. https://doi.org/10.1201/b14024-21.
    [6]
    Vakoc BJ, Fukumura D, Jain RK, Bouma BE. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nat Rev Cancer. 2012;12(5):363–8. https://doi.org/10.1038/nrc3235.
    [7]
    Photiou C, Kassinopoulos M, Pitris C. Extracting Morphological and Sub-Resolution Features from Optical Coherence Tomography Images, a Review with Applications in Cancer Diagnosis. Photonics. 2023;10(1):51. https://doi.org/10.3390/photonics10010051.
    [8]
    Tsai TH, Fujimoto J, Mashimo H. Endoscopic Optical Coherence Tomography for Clinical Gastroenterology. Diagnostics. 2014;4(2):57–93. https://doi.org/10.3390/diagnostics4020057.
    [9]
    Agneter A, Rank EA, Schmoll T, Leitgeb RA, Drexler W. Miniaturizing optical coherence tomography. Transl Biophotonics. 2022;4(1-2). https://doi.org/10.1002/tbio.202100007.
    [10]
    Song G, Jelly ET, Chu KK, Kendall WY, Wax A. A review of low-cost and portable optical coherence tomography. Prog Biomed Eng. 2021;3(3):032002. https://doi.org/10.1088/2516-1091/abfeb7.
    [11]
    Yurtsever G, Považay B, Alex A, Zabihian B, Drexler W, Baets R. Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography. Biomed Optic Express. 2014;5(4):1050. https://doi.org/10.1364/boe.5.001050.
    [12]
    Ji X, Yao X, Gan Y, Mohanty A, Tadayon MA, Hendon CP, et al. On-chip tunable photonic delay line. APL Photon. 2019;4(9):090803. https://doi.org/10.1063/1.5111164.
    [13]
    Akca BI, Worhoff K, de Ridder RM, Nguyen VD, Kalkman J, Ismail N, et al. Toward Spectral-Domain Optical Coherence Tomography on a Chip. IEEE J Sel Top Quantum Electron. 2012;18(3):1223–33. https://doi.org/10.1109/jstqe.2011.2171674.
    [14]
    Akca BI, Považay B, Alex A, Wörhoff K, de Ridder RM, Drexler W, et al. Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip. Opt Express. 2013;21(14):16648. https://doi.org/10.1364/oe.21.016648.
    [15]
    Ruis RM, Leinse A, Dekker R, Heideman RG, van Leeuwen TG, Faber DJ. Decreasing the Size of a Spectral Domain Optical Coherence Tomography System With Cascaded Arrayed Waveguide Gratings in a Photonic Integrated Circuit. IEEE J Sel Top Quantum Electron. 2019;25(1):1–9. https://doi.org/10.1109/jstqe.2018.2874074.
    [16]
    Smit MK. New focusing and dispersive planar component based on an optical phased array. Electron Lett. 1988;24(7):385. https://doi.org/10.1049/el:19880260.
    [17]
    Takahashi H, Suzuki S, Kato K, Nishi I. Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution. Electron Lett. 1990;26(2):87. https://doi.org/10.1049/el:19900058.
    [18]
    Smit MK, Dam CV. PHASAR-based WDM-devices: Principles, design and applications. IEEE J Sel Top Quantum Electron. 1996;2(2):236–50. https://doi.org/10.1109/2944.577370.
    [19]
    Seyringer D. Arrayed Waveguide Gratings. Spotlight. SPIE; 2016. https://doi.org/10.1117/3.2242852.
    [20]
    Seyringer D, Schmid P, Bielik M, Uherek F, Chovan J, Kuzma A. Design, simulation, evaluation, and technological verification of arrayed waveguide gratings. Opt Eng. 2014;53(7):071803. https://doi.org/10.1117/1.oe.53.7.071803.
    [21]
    Seyringer D, Hodzic E. Calculation of accurate channel spacing of an AWG optical demultiplexer applying proportional method. In: Fédéli JM, editor. SPIE Proceedings. 9520, Integrated Photonics: Materials, Devices, and Applications III, 95200T. SPIE; 2015. https://doi.org/10.1117/12.2178271.
    [22]
    Rank EA, Sentosa R, Harper DJ, Salas M, Gaugutz A, Seyringer D, et al. Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings. Light Sci Appl. 2021;10(1). https://doi.org/10.1038/s41377-020-00450-0.
    [23]
    Richter A, Polatynski A, Mingaleev S, Sokolov E, de Felipe D, Conradi H, et al. Virtual prototyping of complex photonic components and integrated circuits for polymer-based integration platform. In: Lee EH, He S, editors. Smart Photonic and Optoelectronic Integrated Circuits XX. San Francisco: SPIE; 2018. https://doi.org/10.1117/12.2290436.
    [24]
    Nathan M. Microlens reflector for out-of-plane optical coupling of a waveguide to a buried silicon photodiode. Appl Phys Lett. 2004;85(14):2688–90. https://doi.org/10.1063/1.1803617.
    [25]
    Masini G, Sahni S, Capellini G, Witzens J, Gunn C. High-Speed Near Infrared Optical Receivers Based on Ge Waveguide Photodetectors Integrated in a CMOS Process. Adv Opt Technol. 2008;2008:1–5. https://doi.org/10.1155/2008/196572.
    [26]
    Byrd MJ, Timurdogan E, Su Z, Poulton CV, Fahrenkopf NM, Leake G, et al. Mode-evolution-based coupler for high saturation power Ge-on-Si photodetectors. Opt Lett. 2017;42(4):851. https://doi.org/10.1364/ol.42.000851.
    [27]
    Bernard M, Gemma L, Brunelli D, Paternoster G, Ghulinyan M. Coupling of Photonic Waveguides to Integrated Detectors Using 3D Inverse Tapering. J Lightwave Technol. 2022;40(18):6201–6. https://doi.org/10.1109/jlt.2022.3190041.
    [28]
    Wen P, Tiwari P, Mauthe S, Schmid H, Sousa M, Scherrer M, et al. Waveguide coupled III-V photodiodes monolithically integrated on Si. Nat Commun. 2022;13(1). https://doi.org/10.1038/s41467-022-28502-6.
    [29]
    Xue Y, Han Y, Wang Y, Li J, Wang J, Zhang Z, et al. High-speed and low dark current silicon-waveguide-coupled III-V photodetectors selectively grown on SOI. Optica. 2022;9(11):1219. https://doi.org/10.1364/optica.468129.
    [30]
    Roelkens G, Brouckaert J, Taillaert D, Dumon P, Bogaerts W, Thourhout DV, et al. Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits. Opt Express. 2005;13(25):10102. https://doi.org/10.1364/opex.13.010102.
    [31]
    De Vita C, Toso F, Pruiti NG, Klitis C, Ferrari G, Sorel M, et al. Amorphous-silicon visible-light detector integrated on silicon nitride waveguides. Opt Lett. 2022;47(10):2598. https://doi.org/10.1364/ol.455458.
    [32]
    D’Agostino D, Desbordes T, Broeke R, Boerkamp M, Mink J, Ambrosius HPMM, et al. A monolithically integrated AWG based wavelength interrogator with 180 nm working range and pm resolution. In: Advanced Photonics for Communications. IPRSN. OSA; 2014. https://doi.org/10.1364/iprsn.2014.im2a.4.
    [33]
    Zhang Z, Wang Y, Wang J, Yi D, Chan DWU, Yuan W, et al. Integrated scanning spectrometer with a tunable micro-ring resonator and an arrayed waveguide grating. Photon Res. 2022;10(5):A74. https://doi.org/10.1364/prj.443039.
    [34]
    Hainberger R, Müllner P. PHOTONISCHE INTEGRIERTE SCHALTUNG, AT Patent, EP4033282A1;WO2022161965A1. EP4033282A1;WO2022161965A1. 2022. https://patents.google.com/patent/EP4033282A1.
    [35]
    Vlaskovic M, Zimmermann H, Meinhardt G, Kraft J, Sagmeister M, Schoegler J. PIN-photodiode based active pixel in 0.35 $ \upmu $m high-voltage CMOS for optical coherence tomography. In: 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Croatia: IEEE; 2019. https://doi.org/10.23919/mipro.2019.8757194.
    [36]
    Vlaskovic M, Zimmermann H, Meinhardt G, Kraft J. Image sensor for spectral-domain optical coherence tomography on a chip. Electron Lett. 2020;56(24):1306–9. https://doi.org/10.1049/el.2020.1898.
    [37]
    Lichtenegger A, Baumann B, Yasuno Y. Optical Coherence Tomography Is a Promising Tool for Zebrafish-Based Research–A Review. Bioengineering. 2022;10(1):5. https://doi.org/10.3390/bioengineering10010005.
    [38]
    Narumanchi S, Wang H, Perttunen S, Tikkanen I, Lakkisto P, Paavola J. Zebrafish Heart Failure Models. Front Cell Dev Biol. 2021;9. https://doi.org/10.3389/fcell.2021.662583.
    [39]
    Astell KR, Sieger D. Zebrafish In Vivo Models of Cancer and Metastasis. Cold Spring Harb Perspect Med. 2019;10(8):a037077. https://doi.org/10.1101/cshperspect.a037077.
    [40]
    Gamble JT, Elson DJ, Greenwood JA, Tanguay RL, Kolluri SK. The Zebrafish Xenograft Models for Investigating Cancer and Cancer Therapeutics. Biology. 2021;10(4):252. https://doi.org/10.3390/biology10040252.
    [41]
    Schuermann A, Helker CSM, Herzog W. Angiogenesis in zebrafish. Semin Cell Dev Biol. 2014;31:106–14. https://doi.org/10.1016/j.semcdb.2014.04.037.
    [42]
    Isogai S, Horiguchi M, Weinstein BM. The Vascular Anatomy of the Developing Zebrafish: An Atlas of Embryonic and Early Larval Development. Dev Biol. 2001;230(2):278–301. https://doi.org/10.1006/dbio.2000.9995.
    [43]
    Hegasy D. Illustration. www.hegasy.de. Accessed 8 Mar 2023.
    [44]
    Seyringer D, Müllner P, Eggeling M, Agneter A, Nguyen Q, Rank EA, et al. 512-channel SiN-based AWG-spectrometer for OCT on a chip. In: 2024 24th International Conference on Transparent Optical Networks (ICTON). vol. 123. Bari: IEEE; 2024. pp. 1–4. https://doi.org/10.1109/icton62926.2024.10647672.
    [45]
    Leitgeb RA, Michaely R, Lasser T, Sekhar SC. Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning. Opt Lett. 2007;32(23):3453. https://doi.org/10.1364/ol.32.003453.
    [46]
    Wojtkowski M, Kowalczyk A, Leitgeb R, Fercher AF. Full range complex spectral optical coherence tomography technique in eye imaging. Opt Lett. 2002;27(16):1415. https://doi.org/10.1364/ol.27.001415.
    [47]
    Rarbi F, Dzahini D, Gallin-Martel L, Bouvier J. A low cross-talk 3-channel analog multiplexer with a 12-bit 25-MS/s pipelined ADC. In: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). Anaheim: IEEE; 2012. https://doi.org/10.1109/nssmic.2012.6551233.
    [48]
    Yoon C, Bauer A, Xu D, Dorrer C, Rolland JP. Absolute linear-in-k spectrometer designs enabled by freeform optics. Opt Express. 2019;27(24):34593. https://doi.org/10.1364/oe.27.034593.
    [49]
    Seyringer, D. Application of angular method to correct channel spacing between AWG demultiplexed channels. In Advanced Manufacturing, Electronics and Microsystems. TechConnect Briefs. TechConnect. 2016. pp. 267–71.
    [50]
    Hodzic E, Seyringer D, Uherek F, Chovan J, Kuzma A. Calculation of accurate channel spacing of an arrayed waveguide grating optical multiplexer/demultiplexer applying position method. In: The Tenth International Conference on Advanced Semiconductor Devices and Microsystems. Smolenice: IEEE; 2014. https://doi.org/10.1109/asdam.2014.6998685.
    [51]
    Seyringer D. Arrayed waveguide gratings for telecom and spectroscopic applications. In: Integrated Optics Volume 2: Characterization, devices and applications. [online]. Institution of Engineering and Technology; 2020. pp. 295–336. https://doi.org/10.1049/pbcs077g_ch10.
    [52]
    PHASER tool from Optiwave. https://optiwave.com/resources/academia/wdm-phasar-download/. Accessed 2023.
    [53]
    SolSTis Ti:Sapphire laser, M Square, 1 Kelvin Campus, West of Scotland Science Park, Glasgow, United Kingdom. https://m2lasers.com. Accessed Apr 2023.
    [54]
    KLayout. https://www.klayout.de. Accessed 2023.
    [55]
    Guizar-Sicairos M, Thurman ST, Fienup JR. Efficient subpixel image registration algorithms. Opt Lett. 2008;33(2):156. https://doi.org/10.1364/ol.33.000156.
    [56]
    Mariampillai A, Standish BA, Moriyama EH, Khurana M, Munce NR, Leung MKK, et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett. 2008;33(13):1530. https://doi.org/10.1364/ol.33.001530.
    [57]
    Zhang A, Zhang Q, Chen CL, Wang RK. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt. 2015;20(10):100901. https://doi.org/10.1117/1.jbo.20.10.100901.
    [58]
    Westerfield M. The Zebrafish Book; A guide for the laboratory use of zebrafish (Danio rerio). 4th Edition. Eugene. 2007;1:1–3.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return