Citation: | Chenxi Zhang, Lei Zhang, He Zhang, Bo Fu, Jiyong Wang, Min Qiu. Pulsed polarized vortex beam enabled by metafiber lasers[J]. PhotoniX. doi: 10.1186/s43074-024-00151-6 |
[1] |
Mao D, Zheng Y, Zeng C, Lu H, Wang C, Zhang H, et al. Generation of polarization and phase singular beams in fibers and fiber lasers. Adv Photon. 2021;3(1):014002.
|
[2] |
Wan Z, Wang H, Liu Q, Fu X, Shen Y. Ultra-degree-of-freedom structured light for ultracapacity information carriers. ACS Photon. 2023;10(7):2149–64.
|
[3] |
Wang H, Zhan Z, Hu F, Meng Y, Liu Z, Fu X, et al. Intelligent optoelectronic processor for orbital angular momentum spectrum measurement. PhotoniX. 2023;4(1):9.
|
[4] |
Huo P, Chen W, Zhang Z, Zhang Y, Liu M, Lin P, et al. Observation of spatiotemporal optical vortices enabled by symmetry-breaking slanted nanograting. Nat Commun. 2024;15(1):3055.
|
[5] |
Lipson M. Guiding, modulating, and emitting light on silicon-challenges and opportunities. J Light Technol. 2005;23(12):4222–38.
|
[6] |
Gui L, Wang C, Ding F, Chen H, Xiao X, Bozhevolnyi SI, et al. 60 nm span wavelength-tunable vortex fiber laser with intracavity plasmon metasurfaces. ACS Photon. 2023;10(3):623–31.
|
[7] |
Mao D, Feng T, Zhang W, Lu H, Jiang Y, Li P, et al. Ultrafast all-fiber based cylindrical-vector beam laser. Appl Phys Lett. 2017;110(2):021107.
|
[8] |
Dong Z, Zhang Y, Li H, Tao R, Gu C, Yao P, et al. All-fiber cylindrical vector beams laser based on the principle of mode superposition. Opt Laser Technol. 2021;139:106965.
|
[9] |
Jocher C, Jauregui C, Becker M, Rothhardt M, Limpert J, Tünnermann A. An all-fiber Raman laser for cylindrical vector beam generation. Laser Phys Lett. 2013;10(12):125108.
|
[10] |
Wan H, Wang J, Zhang Z, Cai Y, Sun B, Zhang L. High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler. Opt Express. 2017;25(10):11444–51.
|
[11] |
Hu T, Zhong Q, Li N, Dong Y, Xu Z, Fu YH, et al. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics. 2020;9(4):823–30.
|
[12] |
Wu J, Lai Z, Zhou Y, Xie Y, Lei H, Liu D, et al. High Energy Singular Beams Generation From a Dissipative Soliton Resonance Raman Fiber Laser. J Light Technol. 2023;41(15):5091–6.
|
[13] |
Enderli F, Feurer T. Radially polarized mode-locked Nd: YAG laser. Opt Lett. 2009;34(13):2030–2.
|
[14] |
Li L, Zheng X, Jin C, Qi M, Chen X, Ren Z, et al. High repetition rate Q-switched radially polarized laser with a graphene-based output coupler. Appl Phys Lett. 2014;105(22):221103.
|
[15] |
Rong Z, Han Y, Wang S, Guo C. Generation of arbitrary vector beams with cascaded liquid crystal spatial light modulators. Opt Express. 2014;22(2):1636–44.
|
[16] |
Zhou N, Liu J, Wang J. Reconfigurable and tunable twisted light laser. Sci Rep. 2018;8(1):11394.
|
[17] |
Lin J, Genevet P, Kats MA, Antoniou N, Capasso F. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett. 2013;13(9):4269–74.
|
[18] |
Yu P, Li J, Li X, Schuütz G, Hirscher M, Zhang S, et al. Generation of switchable singular beams with dynamic metasurfaces. ACS Nano. 2019;13(6):7100–6.
|
[19] |
Chen J, Wan C, Zhan Q. Vectorial optical fields: recent advances and future prospects. Sci Bull. 2018;63(1):54–74.
|
[20] |
Ismaeel R, Lee T, Oduro B, Jung Y, Brambilla G. All-fiber fused directional coupler for highly efficient spatial mode conversion. Opt Express. 2014;22(10):11610–9.
|
[21] |
Zhang W, Huang L, Wei K, Li P, Jiang B, Mao D, et al. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave. Opt Express. 2016;24(10):10376–84.
|
[22] |
Zhou Y, Yan K, Chen R, Gu C, Xu L, Wang A, et al. Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating. Appl Phys Lett. 2017;110(16):161104.
|
[23] |
Song KY, Hwang IK, Yun SH, Kim BY. High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm. IEEE Photon Technol Lett. 2002;14(4):501–3.
|
[24] |
Wang F, Shi F, Wang T, Pang F, Wang T, Zeng X. Method of generating femtosecond cylindrical vector beams using broadband mode converter. IEEE Photon Technol Lett. 2017;29(9):747–50.
|
[25] |
Grosjean T, Courjon D, Spajer M. An all-fiber device for generating radially and other polarized light beams. Opt Commun. 2002;203(1–2):1–5.
|
[26] |
Geng J, Fang X, Zhang L, Yao G, Xu L, Liu F, et al. Controllable generation of large-scale highly regular gratings on Si films. Light Adv Manuf. 2021;2(3):274–82.
|
[27] |
Sancho-Parramon J, Bosch S. Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams. ACS Nano. 2012;6(9):8415–23.
|
[28] |
Lyu W, Ma T, Yan Y, Zhang C, Chao J, Cong L, et al. Nickel Nanoparticles as Broadband Saturable Absorbers for Ultrafast Photonics. ACS Appl Nano Mater. 2024;7(7):8221–8.
|
[29] |
Sun J, Cheng H, Xu L, Fu B, Liu X, Zhang H. Ag/MXene composite as a broadband nonlinear modulator for ultrafast photonics. ACS Photon. 2023;10(9):3133–42.
|
[30] |
Liu X, Popa D, Akhmediev N. Revealing the transition dynamics from Q switching to mode locking in a soliton laser. Phys Rev Lett. 2019;123(9):093901.
|
[31] |
Wang K, Zhang X, Kislyakov IM, Dong N, Zhang S, Wang G, et al. Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat Commun. 2019;10(1):3985.
|
[32] |
Feng J, Li X, Shi Z, Zheng C, Li X, Leng D, et al. 2D ductile transition metal chalcogenides (TMCs): novel high-performance Ag$ _2 $S nanosheets for ultrafast photonics. Adv Opt Mater. 2020;8(6):1901762.
|
[33] |
Liu J, Li X, Xu Y, Ge Y, Wang Y, Zhang F, et al. NiPS$ _3 $ nanoflakes: a nonlinear optical material for ultrafast photonics. Nanoscale. 2019;11(30):14383–91.
|
[34] |
Lee EJ, Choi SY, Jeong H, Park NH, Yim W, Kim MH, et al. Active control of all-fibre graphene devices with electrical gating. Nat Commun. 2015;6(1):6851.
|
[35] |
Li N, Xu Z, Dong Y, Hu T, Zhong Q, Fu YH, et al. Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab. Nanophotonics. 2020;9(10):3071–87.
|
[36] |
Jia W, Gao C, Zhao Y, Li L, Wen S, Wang S, et al. Intracavity spatiotemporal metasurfaces. Adv Photon. 2023;5(2):026002.
|
[37] |
Gu P, Cai X, Xue C, Zhang Z, Zhu Y, Du W, et al. Robust and High-Efficient Fabrication of Gold Triangles Array on Optical Fiber Tip for Laser Mode Locking. Adv Mater Interfaces. 2022;9(26):2200703.
|
[38] |
Zhang L, Zhang H, Tang N, Chen X, Liu F, Sun X, et al. ‘Plug-and-play’ plasmonic metafibers for ultrafast fibre lasers. Light Adv Manuf. 2022;3(4):653.
|
[39] |
Zhang L, Sun X, Yu H, Deng N, Qiu F, Wang J, et al. Plasmonic metafibers electro-optic modulators. Light Sci Appl. 2023;12(1):198.
|
[40] |
Wang J, Coillet A, Demichel O, Wang Z, Rego D, Bouhelier A, et al. Saturable plasmonic metasurfaces for laser mode locking. Light Sci Appl. 2020;9(1):50.
|
[41] |
Zhao D, Liu Y, Qiu J, Liu X. Plasmonic saturable absorbers. Adv Photon Res. 2021;2(8):2100003.
|
[42] |
Wang B, Yu P, Wang W, Zhang X, Kuo HC, Xu H, et al. High-Q plasmonic resonances: fundamentals and applications. Adv Opt Mater. 2021;9(7):2001520.
|
[43] |
Liang Y, Zhang H, Zhu W, Agrawal A, Lezec H, Li L, et al. Subradiant dipolar interactions in plasmonic nanoring resonator array for integrated label-free biosensing. ACS Sensors. 2017;2(12):1796–804.
|
[44] |
Zhang L, Shang X, Cao S, Jia Q, Wang J, Yan W, et al. Optical steelyard: high-resolution and wide-range refractive index sensing by synergizing Fabry-Perot interferometer with metafibers. PhotoniX. 2024;5(1):1–17.
|
[45] |
Singh N, Lorenzen J, Sinobad M, Wang K, Liapis AC, Frankis HC, et al. Silicon photonics-based high-energy passively Q-switched laser. Nat Photon. 2024;18:485–91.
|
[46] |
Zou K, Pang K, Song H, Fan J, Zhao Z, Song H, et al. High-capacity free-space optical communications using wavelength-and mode-division-multiplexing in the mid-infrared region. Nat Commun. 2022;13(1):7662.
|
[47] |
Nielsen MD, Mortensen NA. Photonic crystal fiber design based on the V-parameter. Opt Express. 2003;11(21):2762–8.
|
[48] |
Koshiba M, Saitoh K. Applicability of classical optical fiber theories to holey fibers. Opt Lett. 2004;29(15):1739–41.
|
[49] |
Mao D, He Z, Lu H, Li M, Zhang W, Xiaoqi C, et al. All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers. Opt Lett. 2018;43(7):1590–3.
|
[50] |
Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science. 2013;340(6140):1545–8.
|
[51] |
Wu G, Gao S, Tu J, Shen L, Feng Y, Sui Q, et al. Mode manipulation in a ring-core fiber for OAM monitoring and conversion. Nanophotonics. 2022;11(21):4889–98.
|
[52] |
Zhang Z, Wei W, Sun G, Zeng X, Fan W, Tang L, et al. All-fiber short-pulse vortex laser with adjustable pulse width. Laser Phys. 2020;30(5):055102.
|