Turn off MathJax
Article Contents
Shi Sun, Yue Gou, Tie Jun Cui, Hui Feng Ma. High-security nondeterministic encryption communication based on spin-space-frequency multiplexing metasurface[J]. PhotoniX. doi: 10.1186/s43074-024-00154-3
Citation: Shi Sun, Yue Gou, Tie Jun Cui, Hui Feng Ma. High-security nondeterministic encryption communication based on spin-space-frequency multiplexing metasurface[J]. PhotoniX. doi: 10.1186/s43074-024-00154-3

High-security nondeterministic encryption communication based on spin-space-frequency multiplexing metasurface

doi: 10.1186/s43074-024-00154-3
Funds:

This work was supported by the National Natural Science Foundation of China (62071117 and 62288101), the Project for Jiangsu Specially-Appointed Professor, the Major Project of the Natural Science Foundation of Jiangsu Province (BK20212002), the 111 Project (111-2-05), and the Fundamental Research Funds for the Central Universities (2242023K5002).

  • Received Date: 2024-08-18
  • Accepted Date: 2024-11-20
  • Rev Recd Date: 2024-11-04
  • Available Online: 2024-12-02
  • Information security plays an important role in every aspect of life to protect data from stealing and deciphering. However, most of the previously reported works were based on pure algorithm layer or pure physical layer encryptions, which have certain limitations in security. In this paper, a nondeterministic message encryption communication scheme is proposed based on a spin-space-frequency multiplexing metasurface (SSFMM), which integrates both algorithmic and physical layer encryptions, and can also produce multiple different ciphertexts for the same message to prevent the message from being cracked through frequency analysis, thus greatly enhancing the security of the information. To be specific, an SSFMM is first designed as a physical-layer meta-key, which can generate eight independent dot matrix holograms with different spin, space, and frequency characteristics. The target message is then encrypted based on these dot matrix holograms combined with algorithmic operations, and the encrypted message is converted into a quick response (QR) code for easy sending to the target users. Once the target user gets that QR code, he/she can scan it to obtain the encryption information, and then recover the target message according to the pre-agreed encryption protocol combined with the eight dot matrix holograms of SSFMM. Finally, the feasibility of the proposed encryption scheme was experimentally validated at the microwave frequency band.
  • loading
  • [1]
    Waks E, Inoue K, Santori C, Fattal D, Vuckovic J, Solomon GS, et al. Quantum cryptography with a photon turnstile. Nature. 2002;420:762.
    [2]
    Yin J, Li YH, Liao SK, Yang M, Cao Y, Zhang L, et al. Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature. 2020;582:501–5.
    [3]
    Li J, Zhang Y, Chen X, Xiang Y. Secure attribute-based data sharing for resource-limited users in cloud computing. Comput Secur. 2018;72:1–12.
    [4]
    Li J, Shi Y, Zhang Y. Searchable ciphertext-policy attributebased encryption with revocation in cloud storage. Int J Commun Syst. 2017;30:e2942.
    [5]
    Sugier J. Cracking the DES Cipher with cost-optimized FPGA devices. Adv Intell Syst Comput, 2020; 987.
    [6]
    Wang C, Wang QD, Hong CL, Hu QY, Pei Z. Quantum Annealing Public Key Cryptographic Attack Algorithm based on D-Wave advantage. Chin J Comput. 2024;47:1030–44. https://doi.org/10.11897/SP.J.1016.2024.0103.
    [7]
    Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334:333–7.
    [8]
    Yu NF, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13:139–50.
    [9]
    Dorrah AH, Capasso F. Tunable structured light with flat optics. Science. 2022;376: eabi6860.
    [10]
    Song Q, Oden M, Pérez JZ, Kanté B, Genevet P. Plasmonic topological metasurface by encircling an exceptional point. Science. 2021;373:1133–7.
    [11]
    Li L, Cui TJ, Ji W, Liu S, Ding J, Wan X, et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun. 2017;8:197.
    [12]
    Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl. 2014;3:e218.
    [13]
    Yang Y, Jing L, Zheng B, Hao R, Yin W, Li E, et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase. Adv Mater. 2016;28:6866–71.
    [14]
    Chu H, Li Q, Liu B, Luo J, Sun S, Hang ZH, et al. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light: Sci Appl. 2018;7:50.
    [15]
    Qian C, Zheng B, Shen Y, Jing L, Li E, Shen L, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat Photonics. 2020;14:383–90.
    [16]
    Li YL, Li NN, Wang D, Chu F, Lee SD, Zheng YW, et al. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size. Light Sci Appl. 2022;11:188.
    [17]
    Ren H, Fang X, Jang J, Burger J, Rho J, Maier SA. Metasurface orbital angular momentum holography. Nat Commun. 2019;10:2986.
    [18]
    Ren H, Shao W, Li Y, Salim F, Gu M. Three-dimensional vectorial holography based on machine learning inverse design. Sci Adv. 2020;6: eaaz4261.
    [19]
    Sun S, Ma HF, Gou Y, Zhang TY, Wu LW, Cui TJ. Spin- and space-multiplexing metasurface for independent phase controls of quadruplex polarization channels. Adv Opt Mater. 2022;11:2202275.
    [20]
    Gou Y, Ma HF, Sun S, Zhang TY, Wu LW, Wang ZX, et al. Non-interleaved four-channel metasurfaces for simultaneous printing and holographic imaging. Small Struct. 2023;4:2300054.
    [21]
    Karimi E, Schulz SA, Leon ID, Qassim H, Upham J, Boyd RW. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci Appl. 2014;3:e167.
    [22]
    Ren H, Fang X, Jang J, Burger J, Rho J, Maier SA. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat Nanotechnol. 2020;15:948–55.
    [23]
    Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi Zhu, Lee E, et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol. 2018;13:220–6.
    [24]
    Shalaginov MY, An S, Zhang Y, Yang F, Su P, Liberman V, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat Commun. 2021;12:1225.
    [25]
    Wang S, Wu PC, Su VC, Lai YC, Chu CH, Chen JW, et al. Broadband achromatic optical metasurface devices. Nat Commun. 2017;8:187.
    [26]
    Cai G, Li Y, Zhang Y, Jiang X, Chen Y, Qu G, et al. Compact angle-resolved metasurface spectrometer. Nat Mater. 2024;23:71–8.
    [27]
    Ding X, Zhao Z, Xie P, Cai D, Meng F, Wang C, et al. Metasurface-based optical logic operators driven by diffractive neural networks. Adv Mater. 2024;36:2308993.
    [28]
    Lim KT, Liu H, Liu Y, Yang JK. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat Commun. 2019;10:25.
    [29]
    Guo X, Zhong J, Li B, Qi S, Li Y, Li P, et al. Full-color holographic display and encryption with full-polarization degree of freedom. Adv Mater. 2022;34:2103192.
    [30]
    Zang X, Dong F, Yue F, Zhang C, Xu L, Song Z, et al. Polarization encoded color image embedded in a dielectric metasurface. Adv Mater. 2018;30: 1707499.
    [31]
    Chen Y, Yang X, Gao J. 3D Janus plasmonic helical nanoapertures for polarization-encrypted data storage. Light Sci Appl. 2019;8:45.
    [32]
    Fan Q, Liu M, Zhang C, Zhu W, Wang Y, Lin P, et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Phys Rev Lett. 2020;125: 267402.
    [33]
    Zhao R, Huang L, Tang C, Li J, Li X, Wang Y, et al. Nanoscale polarization manipulation and encryption based on dielectric metasurfaces. Adv Opt Mater. 2018;6:1800490.
    [34]
    Zhao R, Sain B, Wei Q, Tang C, Li X, Weiss T, et al. Multichannel Vectorial holographic display and encryption. Light Sci Appl. 2018;7:95.
    [35]
    Deng ZL, Tu QA, Wang Y, Wang ZQ, Shi T, Feng Z, et al. Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography. Adv Mater. 2021;33:2103472.
    [36]
    Ren R, Li Z, Deng L, Shan X, Dai Q, Guan Z, et al. Non-orthogonal polarization multiplexed metasurfaces for tri-channel polychromatic image displays and information encryption. Nanophotonics. 2021;10:2903–14.
    [37]
    Liu HC, Yang B, Guo Q, Shi J, Guan C, Zheng G, et al. Single-pixel computational ghost imaging with helicity dependent metasurface hologram. Sci Adv. 2017;3: e1701477.
    [38]
    Li X, Zhao R, Wei Q, Geng G, Li J, Zhang S, et al. Code division multiplexing inspired dynamic metasurface holography. Adv Fun Mater. 2021;31:2103326.
    [39]
    Georgi P, Wei Q, Sain B, Schlickriede C, Wang Y, Huang L, et al. Optical secret sharing with cascaded metasurface holography. Sci Adv. 2021;7: abf9718.
    [40]
    Zhang F, Guo Y, Pu M, Chen L, Xu M, Liao M, et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun. 2023;14:1946.
    [41]
    Guo X, Li P, Zhong J, Wen D, Wei B, Liu S, et al. Stokes meta-hologram toward optical cryptography. Nat Commun. 2022;13:6687.
    [42]
    Li Z, Kong X, Zhang J, Shao L, Zhang D, Liu J, et al. Cryptography metasurface for one-time-pad encryption and massive data storage. Laser Photonics Rev. 2022;16:2200113.
    [43]
    Zheng P, Dai P, Li Z, Ye Z, Xiong J, Liu HC, et al. Metasurface-based key for computational imaging encryption. Sci Adv. 2021;7:eabg0363.
    [44]
    Zheng Y, Chen K, Xu Z, Zhang N, Wang J, Zhao J, et al. Metasurface-assisted wireless communication with physical level information encryption. Adv Sci. 2022;9:2204558.
    [45]
    Wei H, Zhao H, Chen Y, Wang Z, Cui TJ, Li L. Physical-level secure wireless communication using random-signal-excited reprogrammable metasurface. Appl Phys Lett. 2023;122: 051704.
    [46]
    Wang HL, Ma HF, Zhang YK, Zhang TY, Sun S, Chen YT, et al. Multichannel highly secure wireless communication system with information camouflage capability. Sci Adv. 2024;10: adk7557.
    [47]
    Zulkifli MZWM, Mohd ZW. Attack on cryptography. Comput Secur. 2008;12:33–45.
    [48]
    Song Y, Ye D. Replay attack detection and mitigation for cyber–physical systems via RADIR algorithm with encryption scheduling. Neural Comput. 2023;558:126698.
    [49]
    Wang Z, Ding X, Zhang K, Ratni B, Burokur SN, Gu X, et al. Huygens metasurface holograms with the modulation of focal energy distribution. Adv Opt Mater. 2018;6:1800121.
    [50]
    Zhang F, Pu M, Li X, Gao P, Ma X, Luo J, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions. Adv Fun Mater. 2017;27:1704295.
    [51]
    Bao Y, Yu Y, Xu H, Guo C, Li J, Sun S, et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci Appl. 2019;8:95.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (23) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return