Turn off MathJax
Article Contents
Yi-Wei Zheng, Fan Chu, Fan-Chuan Lin, Yi-Xiao Hu, Yi-Long Li, Yi Zheng, Di Wang, Qiong-Hua Wang. Wide-viewing-angle color holographic 3D display system with high brightness encoding[J]. PhotoniX. doi: 10.1186/s43074-025-00162-x
Citation: Yi-Wei Zheng, Fan Chu, Fan-Chuan Lin, Yi-Xiao Hu, Yi-Long Li, Yi Zheng, Di Wang, Qiong-Hua Wang. Wide-viewing-angle color holographic 3D display system with high brightness encoding[J]. PhotoniX. doi: 10.1186/s43074-025-00162-x

Wide-viewing-angle color holographic 3D display system with high brightness encoding

doi: 10.1186/s43074-025-00162-x
Funds:  We would like to thank Dr. Qi Wang and Dr. Ye-Hao Hou for technical discussion.
  • Received Date: 2024-12-10
  • Accepted Date: 2025-02-09
  • Rev Recd Date: 2025-02-03
  • Available Online: 2025-02-21
  • Holographic 3D display technology, widely considered the ultimate solution for real 3D display, has broad applications in fields including advertisement, industrial manufacturing and military. However, it is difficult to simultaneously realize color holographic 3D display with wide viewing angle and high brightness required for an immersive visual experience. Here, a novel holographic 3D display system based on a customized achromatic liquid crystal grating and a phase-only spatial light modulator is proposed. Thanks to the secondary diffraction performed by the achromatic liquid crystal grating, nine secondary diffraction images of red, green and blue channels overlap in space in time sequence. Additionally, a high brightness hologram encoding method is developed, which introduces a frequency loss function with dynamic weights to ensure that differences of all frequency components in the frequency domain can be learned. The proposed method dramatically enhances light energy utilization by a factor of five, resulting in significantly brighter reconstructed images while substantially attenuating background noise in non-target regions. This groundbreaking system, achieving a remarkable ~ 65° wide viewing angle with good image quality and high brightness, represents a significant advancement in holographic technology, offering a comprehensive solution for wide-viewing-angle, high-brightness, color 3D displays with potential applications across diverse technological domains.
  • loading
  • [1]
    Blanche P-A, Bablumian A, Voorakaranam R, Christenson C, Lin W, Gu T, Flores D, Wang P, Hsieh W-Y, Kathaperumal M, Rachwal B, Siddiqui O, Thomas J, Norwood RA, Yamamoto M, Peyghambarian N. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature. 2010;468:80–3. https://doi.org/10.1038/nature09521.
    [2]
    Shi L, Li B, Kim C, Kellnhofer P, Matusik W. Towards real-time photorealistic 3D holography with deep neural networks. Nature. 2021;591:234–9. https://doi.org/10.1038/s41586-020-03152-0.
    [3]
    Cotte Y, Toy F, Jourdain P, Pavillon N, Boss D, Magistretti P, Marquet P, Depeursinge C. Marker-free phase nanoscopy. Nat Photon. 2013;7:113–7. https://doi.org/10.1038/nphoton.2012.329.
    [4]
    Hÿtch M, Houdellier F, Hüe F, Snoeck E. Nanoscale holographic interferometry for strain measurements in electronic devices. Nature. 2008;453:1086–9. https://doi.org/10.1038/nature07049.
    [5]
    Qu G, Yang W, Song Q, Liu Y, Qiu C-W, Han J, Tsai D-P, Xiao S. Reprogrammable meta-hologram for optical encryption. Nat Commun. 2020;11:5484. https://doi.org/10.1038/s41467-020-19312-9.
    [6]
    Li X, Yang Y, Yan S, Gao W, Zhou Y, Yu X, Bai C, Dan D, Xu X, Yao B. Artificial potential field-empowered dynamic holographic optical tweezers for particle-array assembly and transformation. PhotoniX. 2024;5:32. https://doi.org/10.1186/s43074-024-00144-5.
    [7]
    Wang D, Li YL, Zheng XR, Ji RN, Xie X, Song K, Lin FC, Li NN, Jiang Z, Liu C, Zheng YW, Wang SW, Lu W, Jia BH, Wang QH. Decimeter-depth and polarization addressable color 3D meta-holography. Nat Commun. 2024;15:8242. https://doi.org/10.1038/s41467-024-52267-9.
    [8]
    Jang J, Jang J, Moon SW, Kim J, Mun J, Maier SA, Ren H, Rho J. Wavelength-multiplexed orbital angular momentum meta-holography. PhotoniX. 2024;5:27. https://doi.org/10.1186/s43074-024-00142-7.
    [9]
    Ko J, Kim G, Kim I, Hwang SH, Jeon S, Ahn J, Jeong Y, Ha JH, Heo H, Jeong JH, Park I, Rho J. Metasurface-embedded contact lenses for holographic light projection. Adv Sci. 2024;11:2407045. https://doi.org/10.1002/advs.202407045.
    [10]
    Asad A, Kim J, Khaliq HS, Mahmood N, Akbar J, Chani MTS, Kim Y, Jeon D, Zubair M, Mehmood MQ, Massoud Y, Rho J. Spin-isolated ultraviolet-visible dynamic meta-holographic displays with liquid crystal modulators. Nanoscale Horiz. 2023;8:759–66. https://doi.org/10.1039/d2nh00555g.
    [11]
    Naeem T, Kim J, Khaliq HS, Seong J, Chani MTS, Tauqeer T, Mehmood MQ, Massoud Y, Rho J. Dynamic chiral metasurfaces for broadband phase-gradient holographic displays. Adv Opt Mater. 2023;11: 2202278. https://doi.org/10.1002/adom.202202278.
    [12]
    Sasaki H, Yamamoto K, Ichihashi Y, Senoh T. Image size scalable full-parallax coloured three-dimensional video by electronic holography. Sci Rep. 2014;4:4000. https://doi.org/10.1038/srep04000.
    [13]
    Makowski PL, Kozacki T, Zdankowski P, Zaperty W. Synthetic aperture Fourier holography for wide-angle holographic display of real scenes. Appl Opt. 2015;54: 3658. https://doi.org/10.1364/AO.54.003658.
    [14]
    Kozacki T, Kujawińska M, Finke G, Hennelly B, Pandey N. Extended viewing angle holographic display system with tilted SLMs in a circular configuration. Appl Opt. 2012;51:1771–80. https://doi.org/10.1364/AO.51.001771.
    [15]
    Hahn J, Kim H, Lim Y, Park G, Lee B. Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators. Opt Express. 2008;16:12372–86. https://doi.org/10.1364/OE.16.012372.
    [16]
    Huang K, Liu H, Garcia-Vidal FJ, Hong M, Luk’yanchuk B, Teng J, Qiu CW. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat Commun. 2015;6:7059. https://doi.org/10.1038/ncomms8059.
    [17]
    Kuo G, Waller L, Ng R, Maimone A. High resolution étendue expansion for holographic displays. ACM Trans Graph. 2020;39:66. https://doi.org/10.1145/3386569.3392414.
    [18]
    Tseng E, Kuo G, Baek S-H, Matsuda N, Maimone A, Schiffers F, Chakravarthula P, Fu Q, Heidrich W, Lanman D, Heide F. Neural étendue expander for ultra-wide-angle high-fidelity holographic display. Nat Commun. 2024;15:2907. https://doi.org/10.1038/s41467-024-46915-3.
    [19]
    Xiong J, Wu ST. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight. 2021;1:3. https://doi.org/10.1186/s43593-021-00003-x.
    [20]
    Yin K, Hsiang EL, Zou J, Li Y, Yang Z, Yang Q, Lai PC, Lin CL, Wu ST. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light-Sci Appl. 2022;11:161. https://doi.org/10.1038/s41377-022-00851-3.
    [21]
    Zheng YW, Wang D, Li YL, Li NN, Wang QH. Holographic near-eye display system with large viewing area based on liquid crystal axicon. Opt Express. 2022;30:34106–16. https://doi.org/10.1364/OE.468078.
    [22]
    Li YL, Li NN, Wang D, Chu F, Lee SD, Zheng YW, Wang QH. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size. Light-Sci Appl. 2022;11:188. https://doi.org/10.1038/s41377-022-00880-y.
    [23]
    Deng Z, Jin M, Ye X, Wang S, Shi T, Deng J, Mao N, Cao Y, Guan B, Alù A, Li G, Li X. Full-Color Complex-Amplitude Vectorial Holograms Based on Multi-Freedom Metasurfaces. Adv Funct Mater. 2020;30: 1910610. https://doi.org/10.1002/adfm.201910610.
    [24]
    Zhang Z, Liu J, Gao Q, Duan X, Shi X. A full-color compact 3D see-through near-eye display system based on complex amplitude modulation. Opt Express. 2019;27:7023–35. https://doi.org/10.1364/OE.27.007023.
    [25]
    So S, Kim J, Badloe T, Lee C, Yang Y, Kang H, Rho J. Multicolor and 3D Holography Generated by Inverse-Designed Single-Cell Metasurfaces. Adv Mater. 2023;35: 2208520. https://doi.org/10.1002/adma.202208520.
    [26]
    Yaraş F, Kang H, Onural L. Circular holographic video display system. Opt Express. 2011;19:9147–56. https://doi.org/10.1364/OE.19.009147.
    [27]
    Zaperty W, Kujawinska M, Kozacki T, Wisniowski B. Wide-angle color holographic 3D display with multi-source-based holographic content. Advances in Display Technologies V. San Francisco: SPIE; 2015. p. 93850E. https://doi.org/10.1117/12.2078381.
    [28]
    Li J, Smithwick Q, Chu D. Holobricks: modular coarse integral holographic displays. Light Sci Appl. 2022;11:57. https://doi.org/10.1038/s41377-022-00742-7.
    [29]
    Nam S-W, Moon S, Lee B, Kim D, Lee S, Lee C-K, Lee B. Aberration-corrected full-color holographic augmented reality near-eye display using a Pancharatnam-Berry phase lens. Opt Express. 2020;28:30836–50. https://doi.org/10.1364/OE.405131.
    [30]
    Kim J, Gopakumar M, Choi S, Peng Y, Lopes W, Wetzstein G. Holographic Glasses for Virtual Reality. ACM SIGGRAPH 2022 Conference Proceedings. Vancouver: Association for Computing Machinery; 2022. p. 33. https://doi.org/10.1145/3528233.3530739.
    [31]
    Li X, Ren H, Chen X, Liu J, Li Q, Li C, Xue G, Jia J, Cao L, Sahu A, Hu B, Wang Y, Jin G, Gu M. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun. 2015;6:6984. https://doi.org/10.1038/ncomms7984.
    [32]
    Jin L, Dong Z, Mei S, Yu YF, Wei Z, Pan Z, Rezaei SD, Li X, Kuznetsov AI, Kivshar YS, Yang JKW, Qiu C-W. Noninterleaved Metasurface for (26–1) Spin- and Wavelength-Encoded Holograms. Nano Lett. 2018;18:8016–24. https://doi.org/10.1021/acs.nanolett.8b04246.
    [33]
    Duan X, Liu J, Shi X, Zhang Z, Xiao J. Full-color see-through near-eye holographic display with 80° field of view and an expanded eye-box. Opt Express. 2020;28:31316–29. https://doi.org/10.1364/OE.399359.
    [34]
    Ji J, Chen C, Sun J, Ye X, Wang Z, Li J, Wang J, Song W, Huang C, Qiu K, Zhu S, Li T. High-dimensional Poincaré beams generated through cascaded metasurfaces for high-security optical encryption. PhotoniX. 2024;5:13. https://doi.org/10.1186/s43074-024-00125-8.
    [35]
    Feng H, Li Q, Wan W, Song J-H, Gong Q, Brongersma ML, Li Y. Spin-Switched Three-Dimensional Full-Color Scenes Based on a Dielectric Meta-hologram. ACS Photonics. 2019;6:2910–6. https://doi.org/10.1021/acsphotonics.9b01017.
    [36]
    Wang B, Dong F, Li Q-T, Yang D, Sun C, Chen J, Song Z, Xu L, Chu W, Xiao Y-F, Gong Q, Li Y. Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms. Nano Lett. 2016;16:5235–40. https://doi.org/10.1021/acs.nanolett.6b02326.
    [37]
    Wang D, Li Y-L, Chu F, Li N-N, Li Z-S, Lee S-D, Nie Z-Q, Liu C, Wang Q-H. Color liquid crystal grating based color holographic 3D display system with large viewing angle. Light Sci Appl. 2024;13:16. https://doi.org/10.1038/s41377-023-01375-0.
    [38]
    Kavaklı K, Shi L, Urey H, Matusik W, Akşit K. Multi-color Holograms Improve Brightness in Holographic Displays. SIGGRAPH Asia 2023 Conference Papers. Sydney NSW Australia: ACM; 2023. pp. 1–11. https://doi.org/10.1145/3610548.3618135.
    [39]
    Xiong J, Zhong H, Cheng D, Wu S-T, Wang Y. Full degree-of-freedom polarization hologram by freeform exposure and inkjet printing. PhotoniX. 2023;4:35. https://doi.org/10.1186/s43074-023-00111-6.
    [40]
    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nanotech. 2015;10:308–12. https://doi.org/10.1038/nnano.2015.2.
    [41]
    Panuski CL, Christen I, Minkov M, Brabec CJ, Trajtenberg-Mills S, Griffiths AD, McKendry JJD, Leake GL, Coleman DJ, Tran C, St Louis J, Mucci J, Horvath C, Westwood-Bachman JN, Preble SF, Dawson MD, Strain MJ, Fanto ML, Englund DR. A full degree-of-freedom spatiotemporal light modulator. Nat Photon. 2022;16:834–42. https://doi.org/10.1038/s41566-022-01086-9.
    [42]
    Wang D, Li Z-S, Zheng Y, Zhao Y-R, Liu C, Xu J-B, Zheng Y-W, Huang Q, Chang C-L, Zhang D-W, Zhuang S-L, Wang Q-H. Liquid lens based holographic camera for real 3D scene hologram acquisition using end-to-end physical model-driven network. Light Sci Appl. 2024;13:62. https://doi.org/10.1038/s41377-024-01410-8.
    [43]
    Jiang L, Dai B, Wu W, Loy CC. Focal Frequency Loss for Image Reconstruction and Synthesis. 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada: IEEE; 2021. pp. 13899–909. https://doi.org/10.1109/ICCV48922.2021.01366.
    [44]
    Chao B, Gopakumar M, Choi S, Wetzstein G. High-brightness holographic projection. Opt Lett. 2023;48:4041–4. https://doi.org/10.1364/OL.489617.
    [45]
    Chen C, Lee B, Li NN, Chae M, Wang D, Wang QH, Lee B. Multi-depth hologram generation using stochastic gradient descent algorithm with complex loss function. Opt Express. 2021;29:15089–103. https://doi.org/10.1364/OE.425077.
    [46]
    Chen C, Nam S-W, Kim D, Lee J, Jeong Y, Lee B. Ultrahigh-fidelity full-color holographic display via color-aware optimization. PhotoniX. 2024;5:20. https://doi.org/10.1186/s43074-024-00134-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (11) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return