Citation: | Ziwei Xu, Huan Tian, Zhen Zeng, Lingjie Zhang, Yaowen Zhang, Heping Li, Zhiyao Zhang, Yong Liu. Harnessing nonlinear optoelectronic oscillator for speeding up reinforcement learning[J]. PhotoniX. doi: 10.1186/s43074-025-00163-w |
[1] |
Dennard R. Evolution of the MOSFET dynamic RAM—A personal view. IEEE Trans Electron Devices. 1984;31(11):1549–55.
|
[2] |
Dennard RH, et al. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circuits. 1974;9(5):256–68.
|
[3] |
Hill MD, Marty MR. Amdahl’s law in the multicore era. Computer. 2008;41(7):33–8.
|
[4] |
Li YZ, Tian L. Computer-free computational imaging: optical computing for seeing through random media. Light-Sci Appl. 2022;11(1):37.
|
[5] |
Hu JT, et al. Diffractive optical computing in free space. Nat Commun. 2024;15(1):1525.
|
[6] |
Xu ZH, Yuan XY, Zhou TK, Fang L. A multichannel optical computing architecture for advanced machine vision. Light-Sci Appl. 2022;11(1):255.
|
[7] |
Zhu HH, et al. Space-efficient optical computing with an integrated chip diffractive neural network. Nat Commun. 2022;13(1):1044.
|
[8] |
Meng XY, et al. Compact optical convolution processing unit based on multimode interference. Nat Commun. 2023;14(1):3000.
|
[9] |
Liu WL, et al. A fully reconfigurable photonic integrated signal processor. Nat Photonics. 2016;10(3):190–5.
|
[10] |
Wu TW, Menarini M, Gao ZH, Feng L. Lithography-free reconfigurable integrated photonic processor. Nat Photonics. 2023;17(8):710–6.
|
[11] |
Kitayama K, et al. Novel frontier of photonics for data processing—Photonic accelerator. APL Photonics. 2019;4(9):090901.
|
[12] |
Wu CM, et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat Commun. 2021;12(1):96.
|
[13] |
Zhou HL, et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light-Sci Appl. 2022;11(1):30.
|
[14] |
Fishman T, et al. Imaging the field inside nanophotonic accelerators. Nat Commun. 2023;14(1):3687.
|
[15] |
Wu CM, et al. Harnessing optoelectronic noises in a photonic generative network. Sci Adv. 2022;8(3):2956.
|
[16] |
McNeur J, et al. Elements of a dielectric laser accelerator. Optica. 2018;5(6):687–90.
|
[17] |
Shiloh R, et al. Electron phase-space control in photonic chip-based particle acceleration. Nature. 2021;597(7877):498–502.
|
[18] |
Shen YC, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics. 2017;11(7):441–6.
|
[19] |
Mourgias-Alexandris G, et al. Noise-resilient and high-speed deep learning with coherent silicon photonics. Nat Commun. 2022;13(1):5572.
|
[20] |
Ma W, et al. Deep learning for the design of photonic structures. Nat Photonics. 2021;15(2):77–90.
|
[21] |
Jiang JQ, Chen MK, Fan JA. Deep neural networks for the evaluation and design of photonic devices. Nat Rev Mater. 2021;6(8):679–700.
|
[22] |
Marandi A, Wang Z, Takata K, Byer RL, Yamamoto Y. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat Photonics. 2014;8(12):937–42.
|
[23] |
McMahon PL, et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science. 2016;354(6312):614–7.
|
[24] |
Inagaki T, et al. A coherent Ising machine for 2000-node optimization problems. Science. 2016;354(6312):603–6.
|
[25] |
Cen QZ, et al. Large-scale coherent Ising machine based on optoelectronic parametric oscillator. Light-Sci Appl. 2022;11(1):333.
|
[26] |
Bybee C, et al. Efficient optimization with higher-order Ising machines. Nat Commun. 2023;14(1):6033.
|
[27] |
Van Der Sande G, et al. Advances in photonic reservoir computing. Nanophotonics. 2017;6(3):561–76.
|
[28] |
Tanaka G, et al. Recent advances in physical reservoir computing: A review. Neural Netw. 2019;115:100–23.
|
[29] |
Liang XP, et al. Rotating neurons for all-analog implementation of cyclic reservoir computing. Nat Commun. 2022;13(1):1549.
|
[30] |
Hasegawa H, Kanno K, Uchida A. Parallel and deep reservoir computing using semiconductor lasers with optical feedback. Nanophotonics. 2023;12(5):869–81.
|
[31] |
Xia W, et al. Configured quantum reservoir computing for multi-task machine learning. Sci Bull. 2023;68(20):2321–9.
|
[32] |
Witt D, Young J, Chrostowski L. Reinforcement learning for photonic component design. APL Photonics. 2023;8(10):106101.
|
[33] |
Bueno J, et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica. 2018;5(6):756–60.
|
[34] |
Do N, Truong D, Nguyen D, Hoai M, Pham C. Self-controlling photonic-on-chip networks with deep reinforcement learning. Sci Rep. 2021;11(1):23151.
|
[35] |
Iwami R, et al. Controlling chaotic itinerancy in laser dynamics for reinforcement learning. Sci Adv. 2022;8(49):8325.
|
[36] |
Matsuo Y, et al. Deep learning, reinforcement learning, and world models. Neural Netw. 2022;152:267–75.
|
[37] |
Yu C, Liu JM, Nemati SM, Yin GS. Reinforcement learning in healthcare: A survey. ACM Comput Surv. 2023;55(1):5.
|
[38] |
Kiran BR, et al. Deep reinforcement learning for autonomous driving: A survey. IEEE Trans Intell Transp Syst. 2022;23(6):4909–26.
|
[39] |
Kober J, Bagnell JA, Peters J. Reinforcement learning in robotics: A survey. Int J Robot Res. 2013;32(11):1238–74.
|
[40] |
Preil D, Krapp M. Bandit-based inventory optimisation: Reinforcement learning in multi-echelon supply chains. Int J Prod Econ. 2022;252:108578.
|
[41] |
Morijiri K, et al. Parallel photonic accelerator for decision making using optical spatiotemporal chaos. Optica. 2023;10(3):339–48.
|
[42] |
Morijiri K, Mihana T, Kanno K, Naruse M, Uchida A. Decision making for large-scale multi-armed bandit problems using bias control of chaotic temporal waveforms in semiconductor lasers. Sci Rep. 2022;12(1):8073.
|
[43] |
Mihana T, et al. Decision making for the multi-armed bandit problem using lag synchronization of chaos in mutually coupled semiconductor lasers. Opt Express. 2019;27(19):26989–7008.
|
[44] |
Shen BT, et al. Harnessing microcomb-based parallel chaos for random number generation and optical decision making. Nat Commun. 2023;14(1):4590.
|
[45] |
Tian H, et al. Externally-triggered spiking and spiking cluster oscillation in broadband optoelectronic oscillator. J Lightwave Technol. 2023;41(1):48–58.
|
[46] |
Bandt C, Pompe B. Permutation entropy: A natural complexity measure for time series. Phys Rev Lett. 2002;88(17):174102.
|
[47] |
Marangon DG, et al. A fast and robust quantum random number generator with a self-contained integrated photonic randomness core. Nat Electron. 2024;7(5):396–404.
|
[48] |
Tanizawa K, Kato K, Futami F. Real-time 50-Gbit/s spatially multiplexed quantum random number generator based on vacuum fluctuation. J Lightwave Technol. 2024;42(4):1209–14.
|
[49] |
Keshavarzian P, et al. A 3.3-Gb/s SPAD-based quantum random number generator. IEEE J Solid-State Circuit. 2023;58(9):2632–47.
|
[50] |
Chen CY, Li SH, Song CK. A 200 kb/s 36 µw true random number generator based on dual oscillators for IOT security application. Electronics. 2023;12(10):2332.
|
[51] |
Argyris A, et al. Chaos-based communications at high bit rates using commercial fiber-optic links. Nature. 2005;438(7066):343–6.
|
[52] |
Chembo YK, Brunner D, Jacquot M, Larger L. Optoelectronic oscillators with time-delayed feedback. Rev Mod Phys. 2019;91(3):035006.
|
[53] |
Hao TF, et al. Towards monolithic integration of OEOs: From systems to chips. J Lightwave Technol. 2018;36(19):4565–82.
|
[54] |
Zhang GJ, et al. Hybrid-integrated wideband tunable optoelectronic oscillator. Opt Express. 2023;31(10):16929–38.
|