Turn off MathJax
Article Contents
San Kim, Tae-In Jeong, Robert A. Taylor, Kwangseuk Kyhm, Young-Jin Kim, Seungchul Kim. Interleaved frequency comb by chip-scale acousto-optic phase modulation at polydimethylsiloxane for higher-resolution direct plasmonic comb spectroscopy[J]. PhotoniX. doi: 10.1186/s43074-025-00170-x
Citation: San Kim, Tae-In Jeong, Robert A. Taylor, Kwangseuk Kyhm, Young-Jin Kim, Seungchul Kim. Interleaved frequency comb by chip-scale acousto-optic phase modulation at polydimethylsiloxane for higher-resolution direct plasmonic comb spectroscopy[J]. PhotoniX. doi: 10.1186/s43074-025-00170-x

Interleaved frequency comb by chip-scale acousto-optic phase modulation at polydimethylsiloxane for higher-resolution direct plasmonic comb spectroscopy

doi: 10.1186/s43074-025-00170-x
Funds:  This work was supported by BrainLink program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (RS- 2023 - 00236798) and BK21 FOUR Program by Pusan National University Research Grant, 2021. This work was supported by the National Research Foundation (NRF) grant funded by the Korean government (RS- 2024 - 00336583) and the Korea government (MSIT) (No. RS- 2024 - 00406152).
  • Received Date: 2025-01-09
  • Accepted Date: 2025-04-01
  • Rev Recd Date: 2025-03-08
  • Available Online: 2025-04-14
  • High-resolution spectroscopy unveils the fundamental physics of quantum states, molecular dynamics, and energy transfers. Ideally, a higher spectral resolution over a broader bandwidth is the prerequisite, but traditional spectroscopic techniques can only partially fulfill this requirement even with a bulky system. Here we report that a multi-frequency acousto-optic phase modulation at a chip-scale of soft polydimethylsiloxane can readily support a 200-times higher 0.5-MHz spectral resolution for the frequency-comb-based spectroscopy, while co-located plasmonic nanostructures mediate the strong light-matter interaction. These results suggest the potential of polydimethylsiloxane acousto-optic phase modulation for cost-effective, compact, multifunctional chip-scale tools in diverse applications such as quantum spectroscopy, high-finesse cavity analysis, and surface plasmonic spectroscopy.
  • loading
  • [1]
    Spaun B, et al. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature. 2016;533:517–20.
    [2]
    Changala PB, Weichman ML, Lee KF, Fermann ME, Ye J. Rovibrational quantum state resolution of the C60 fullerene. Science. 2019;363:49–54.
    [3]
    Dantus M, Bowman R, Zewail A. Femtosecond laser observations of molecular vibration and rotation. Nature. 1990;343:737–9.
    [4]
    Diddams SA, Hollberg L, Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature. 2007;445:627–30.
    [5]
    Hashimoto K, Badarla VR, Kawai A, Ideguchi T. Complementary vibrational spectroscopy. Nat Commun. 2019;10:4411.
    [6]
    Niering M, et al. Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock. Phys Rev Lett. 2000;84:5496.
    [7]
    Ahmadi M, Alves B, Baker C, et al. Observation of the 1S–2S transition in trapped antihydrogen. Nature. 2017;541:506–10.
    [8]
    Grinin A, et al. Two-photon frequency comb spectroscopy of atomic hydrogen. Science. 2020;370:1061–6.
    [9]
    Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nat Photonics. 2009;3:99–102.
    [10]
    Picqué N, Hänsch TW. Frequency comb spectroscopy. Nat Photonics. 2019;13:146–57.
    [11]
    Suh M-G, Yang Q-F, Yang KY, Yi X, Vahala KJ. Microresonator soliton dual-comb spectroscopy. Science. 2016;354:600–3.
    [12]
    Dutt A, et al. On-chip dual-comb source for spectroscopy. Sci Adv. 2018;4: e1701858.
    [13]
    Marin-Palomo P, Kemal J, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature. 2017;546:274–9.
    [14]
    Chang L, Liu S, Bowers JE. Integrated optical frequency comb technologies. Nat Photonics. 2022;16:95–108.
    [15]
    Hänsch TW. Nobel lecture: passion for precision. Rev Mod Phys. 2006;78:1297.
    [16]
    Eckstein JN, Ferguson A, Hänsch T. High-resolution two-photon spectroscopy with picosecond light pulses. Phys Rev Lett. 1978;40:847.
    [17]
    Marian A, Stowe MC, Lawall JR, Felinto D, Ye J. United time-frequency spectroscopy for dynamics and global structure. Science. 2004;306:2063–8.
    [18]
    Cingöz A, et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature. 2012;482:68–71.
    [19]
    Canella A, et al. Low-repetition-rate optical frequency comb. Optica. 2024;11:1–9.
    [20]
    Ho K-P, Kahn JM. Optical frequency comb generator using phase modulation in amplified circulating loop. IEEE photon Technol Lett. 1993;5:721–5.
    [21]
    Saleh BEA, Teich MC. Chapter 20. In: Fundamentals of Photonics. 3rd ed. Hoboken: Wiley; 2019.
    [22]
    Wooten EL, et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quant Electron. 2000;6:69–82.
    [23]
    Snigirev V, Riedhauser A, Lihachev G, et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature. 2023;615:411–7.
    [24]
    Li M, Ling J, He Y, et al. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun. 2020;11:4123.
    [25]
    Zhang M, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature. 2019;568:373–7.
    [26]
    Rueda A, Sedlmeir F, Kumari M, Leuchs G, Schwefel HG. Resonant electro-optic frequency comb. Nature. 2019;568:378–81.
    [27]
    Hu Y, et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat Photonics. 2022;16:679–85.
    [28]
    Chang I. Acousto-optic devices and applications. Handb Opt. 1995;2(12):11-12.54.
    [29]
    Schrödel Y, Hartmann C, Zheng J, et al. Acousto-optic modulation of gigawatt-scale laser pulses in ambient air. Nat Photonics. 2024;18:54–9.
    [30]
    Kolle M, Lee S. Progress and opportunities in soft photonics and biologically inspired optics. Adv Mater. 2018;30:1702669.
    [31]
    Zhang X, Qiu J, Li X, Zhao J, Liu L. Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl Opt. 2020;59:2337–44.
    [32]
    Wang Q, Han W, Wang Y, Lu M, Dong L. Tape nanolithography: a rapid and simple method for fabricating flexible, wearable nanophotonic devices. Microsyst Nanoeng. 2018;4:31.
    [33]
    Ludlow AD, Boyd MM, Ye J, Peik E, Schmidt PO. Optical atomic clocks. Rev Mod Phys. 2015;87:637.
    [34]
    Anh ND, et al. Plasmonic dynamics measured with frequency-comb-referenced phase spectroscopy. Nat Phys. 2019;15:132–7.
    [35]
    Bjorklund GC. Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions. Opt Lett. 1980;5:15–7.
    [36]
    Liu N, Cui Y, Khoo B, Zhang A. Damage characteristics of elastic material through a thin membrane using high-intensity focused ultrasound (HIFU). AIP Adv. 2018;8:115123.
    [37]
    Brick D, Emre E, Grossmann M, Dekorsy T, Hettich M. Picosecond photoacoustic metrology of SiO2 and LiNbO3 layer systems used for high frequency surface-acoustic-wave filters. Appl Sci. 2017;7:822.
    [38]
    Eschler H, Weidinger F. Acousto−optic properties of dense flint glasses. J Appl Phys. 1975;46:65–70.
    [39]
    Hong C, Yang S, Ndukaife JC. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Nat Nanotechnol. 2020;15:908–13.
    [40]
    Zhang Y, Min C, Dou X, et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci Appl. 2021;10:59.
    [41]
    Nguyen DA, Kim DH, Lee GH, et al. Real-time monitoring of fast gas dynamics with a single-molecule resolution by frequency-comb-referenced plasmonic phase spectroscopy. PhotoniX. 2024;5:22.
    [42]
    Geng X, Chun B, Seo J, et al. Frequency comb transferred by surface plasmon resonance. Nat Commun. 2016;7:10685.
    [43]
    Shih T-K, Chen C-F, Ho J-R, Chuang F-T. Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding. Microelectron Eng. 2006;83:2499–503.
    [44]
    Psaltis D, Quake S, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature. 2006;442:381–6.
    [45]
    Li G. Recent advances in coherent optical communication. Optica. 2009;1:279–307.
    [46]
    Mitchell EW. Coherent laser ranging for precision imaging through flames. Optica. 2018;5:988–95.
    [47]
    Katori H. Optical lattice clocks and quantum metrology. Nat Photonics. 2011;5:203–10.
    [48]
    Kondov SS, et al. Molecular lattice clock with long vibrational coherence. Nat Phys. 2019;15:1118–22.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (16) PDF downloads(0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return