Citation: | San Kim, Tae-In Jeong, Robert A. Taylor, Kwangseuk Kyhm, Young-Jin Kim, Seungchul Kim. Interleaved frequency comb by chip-scale acousto-optic phase modulation at polydimethylsiloxane for higher-resolution direct plasmonic comb spectroscopy[J]. PhotoniX. doi: 10.1186/s43074-025-00170-x |
[1] |
Spaun B, et al. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature. 2016;533:517–20.
|
[2] |
Changala PB, Weichman ML, Lee KF, Fermann ME, Ye J. Rovibrational quantum state resolution of the C60 fullerene. Science. 2019;363:49–54.
|
[3] |
Dantus M, Bowman R, Zewail A. Femtosecond laser observations of molecular vibration and rotation. Nature. 1990;343:737–9.
|
[4] |
Diddams SA, Hollberg L, Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature. 2007;445:627–30.
|
[5] |
Hashimoto K, Badarla VR, Kawai A, Ideguchi T. Complementary vibrational spectroscopy. Nat Commun. 2019;10:4411.
|
[6] |
Niering M, et al. Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock. Phys Rev Lett. 2000;84:5496.
|
[7] |
Ahmadi M, Alves B, Baker C, et al. Observation of the 1S–2S transition in trapped antihydrogen. Nature. 2017;541:506–10.
|
[8] |
Grinin A, et al. Two-photon frequency comb spectroscopy of atomic hydrogen. Science. 2020;370:1061–6.
|
[9] |
Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nat Photonics. 2009;3:99–102.
|
[10] |
Picqué N, Hänsch TW. Frequency comb spectroscopy. Nat Photonics. 2019;13:146–57.
|
[11] |
Suh M-G, Yang Q-F, Yang KY, Yi X, Vahala KJ. Microresonator soliton dual-comb spectroscopy. Science. 2016;354:600–3.
|
[12] |
Dutt A, et al. On-chip dual-comb source for spectroscopy. Sci Adv. 2018;4: e1701858.
|
[13] |
Marin-Palomo P, Kemal J, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature. 2017;546:274–9.
|
[14] |
Chang L, Liu S, Bowers JE. Integrated optical frequency comb technologies. Nat Photonics. 2022;16:95–108.
|
[15] |
Hänsch TW. Nobel lecture: passion for precision. Rev Mod Phys. 2006;78:1297.
|
[16] |
Eckstein JN, Ferguson A, Hänsch T. High-resolution two-photon spectroscopy with picosecond light pulses. Phys Rev Lett. 1978;40:847.
|
[17] |
Marian A, Stowe MC, Lawall JR, Felinto D, Ye J. United time-frequency spectroscopy for dynamics and global structure. Science. 2004;306:2063–8.
|
[18] |
Cingöz A, et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature. 2012;482:68–71.
|
[19] |
Canella A, et al. Low-repetition-rate optical frequency comb. Optica. 2024;11:1–9.
|
[20] |
Ho K-P, Kahn JM. Optical frequency comb generator using phase modulation in amplified circulating loop. IEEE photon Technol Lett. 1993;5:721–5.
|
[21] |
Saleh BEA, Teich MC. Chapter 20. In: Fundamentals of Photonics. 3rd ed. Hoboken: Wiley; 2019.
|
[22] |
Wooten EL, et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quant Electron. 2000;6:69–82.
|
[23] |
Snigirev V, Riedhauser A, Lihachev G, et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature. 2023;615:411–7.
|
[24] |
Li M, Ling J, He Y, et al. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun. 2020;11:4123.
|
[25] |
Zhang M, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature. 2019;568:373–7.
|
[26] |
Rueda A, Sedlmeir F, Kumari M, Leuchs G, Schwefel HG. Resonant electro-optic frequency comb. Nature. 2019;568:378–81.
|
[27] |
Hu Y, et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat Photonics. 2022;16:679–85.
|
[28] |
Chang I. Acousto-optic devices and applications. Handb Opt. 1995;2(12):11-12.54.
|
[29] |
Schrödel Y, Hartmann C, Zheng J, et al. Acousto-optic modulation of gigawatt-scale laser pulses in ambient air. Nat Photonics. 2024;18:54–9.
|
[30] |
Kolle M, Lee S. Progress and opportunities in soft photonics and biologically inspired optics. Adv Mater. 2018;30:1702669.
|
[31] |
Zhang X, Qiu J, Li X, Zhao J, Liu L. Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl Opt. 2020;59:2337–44.
|
[32] |
Wang Q, Han W, Wang Y, Lu M, Dong L. Tape nanolithography: a rapid and simple method for fabricating flexible, wearable nanophotonic devices. Microsyst Nanoeng. 2018;4:31.
|
[33] |
Ludlow AD, Boyd MM, Ye J, Peik E, Schmidt PO. Optical atomic clocks. Rev Mod Phys. 2015;87:637.
|
[34] |
Anh ND, et al. Plasmonic dynamics measured with frequency-comb-referenced phase spectroscopy. Nat Phys. 2019;15:132–7.
|
[35] |
Bjorklund GC. Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions. Opt Lett. 1980;5:15–7.
|
[36] |
Liu N, Cui Y, Khoo B, Zhang A. Damage characteristics of elastic material through a thin membrane using high-intensity focused ultrasound (HIFU). AIP Adv. 2018;8:115123.
|
[37] |
Brick D, Emre E, Grossmann M, Dekorsy T, Hettich M. Picosecond photoacoustic metrology of SiO2 and LiNbO3 layer systems used for high frequency surface-acoustic-wave filters. Appl Sci. 2017;7:822.
|
[38] |
Eschler H, Weidinger F. Acousto−optic properties of dense flint glasses. J Appl Phys. 1975;46:65–70.
|
[39] |
Hong C, Yang S, Ndukaife JC. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Nat Nanotechnol. 2020;15:908–13.
|
[40] |
Zhang Y, Min C, Dou X, et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci Appl. 2021;10:59.
|
[41] |
Nguyen DA, Kim DH, Lee GH, et al. Real-time monitoring of fast gas dynamics with a single-molecule resolution by frequency-comb-referenced plasmonic phase spectroscopy. PhotoniX. 2024;5:22.
|
[42] |
Geng X, Chun B, Seo J, et al. Frequency comb transferred by surface plasmon resonance. Nat Commun. 2016;7:10685.
|
[43] |
Shih T-K, Chen C-F, Ho J-R, Chuang F-T. Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding. Microelectron Eng. 2006;83:2499–503.
|
[44] |
Psaltis D, Quake S, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature. 2006;442:381–6.
|
[45] |
Li G. Recent advances in coherent optical communication. Optica. 2009;1:279–307.
|
[46] |
Mitchell EW. Coherent laser ranging for precision imaging through flames. Optica. 2018;5:988–95.
|
[47] |
Katori H. Optical lattice clocks and quantum metrology. Nat Photonics. 2011;5:203–10.
|
[48] |
Kondov SS, et al. Molecular lattice clock with long vibrational coherence. Nat Phys. 2019;15:1118–22.
|