Citation: | Xing Yang, Shihuan Ran, Ziquan Li, Liangjun Lu, Yu Li, Ngon Phu Wai, MingHua Zhang, Guo-Qiang Lo, Jianping Chen, Linjie Zhou. Field programmable silicon microring WDM transceiver leveraging monolithically integrated phase-change materials[J]. PhotoniX. doi: 10.1186/s43074-025-00174-7 |
[1] |
Shekhar S, Bogaerts W, Chrostowski L, et al. Roadmapping the next generation of silicon photonics. Nature Communications. 2024;15(1):751.
|
[2] |
Wu H, Dai Q. Artificial intelligence accelerated by light. Nature. 2021;589(7840):25–6.
|
[3] |
Ran S, Zhou G, Li Y, et al. Micro-ring modulators with integrated inductor to mitigate bandwidth and extinction ratio trade-off. IEEE Photon Technol Lett. 2024;36(4):231–4.
|
[4] |
Yuan Y, Peng Y, Sorin WV, et al. A 5 × 200 Gbps microring modulator silicon chip empowered by two-segment Z-shape junctions. Nat Commun. 2024;15(1):918.
|
[5] |
Xie C, Raj M, Joshi A, et al. A 64 Gb/s NRZ O-Band Ring Modulator with 3.2 THz FSR for DWDM Applications [Z]. Optical Fiber Communication Conference (OFC) 2024. 2024.https://doi.org/10.1364/OFC.2024.Tu2D.5
|
[6] |
Peng Y, Yuan Y, Sorin WV, et al. An 8 × 160 Gb s−1 all-silicon avalanche photodiode chip. Nat Photon. 2024;18:928–34.
|
[7] |
Zhang W, Zhu J, Li K, et al. Universal Silicon ring resonator for error free transmission links. Photonics Res. 2023;12(4):701–11.
|
[8] |
Yuan Y, Sorin WV, Liang D, et al. Mechanisms of enhanced sub-bandgap absorption in high-speed all-silicon avalanche photodiodes. Photonics Res. 2023;11(2):337.
|
[9] |
Rizzo A, Novick A, Gopal V, et al. Massively scalable Kerr comb-driven silicon photonic link. Nat Photon. 2023;17(9):781–90.
|
[10] |
Rizzo A, Daudlin S, Novick A, et al. Petabit-scale silicon photonic interconnects with integrated kerr frequency combs. IEEE J Sel Top Quantum Electron. 2023;29(1):1–20.
|
[11] |
Novick A, James A, Dai L Y, et al. High-bandwidth density silicon photonic resonators for energy-efficient optical interconnects. Appl Phys Rev. 2023, 10(4).
|
[12] |
Liu Y, Zhang H, Liu J, et al. Parallel wavelength-division-multiplexed signal transmission and dispersion compensation enabled by soliton microcombs and microrings. Nat Commun. 2024;15(1):3645.
|
[13] |
James A, Novick A, Rizzo A, et al. Scaling comb-driven resonator-based DWDM silicon photonic links to multi-Tb/s in the multi-FSR regime. Optica. 2023;10(7):832–40.
|
[14] |
Omirzakhov K, Aflatouni F. 12.1 Monolithically Integrated Sub-63 fJ/b 8-Channel 256Gb/s Optical Transmitter with Autonomous Wavelength Locking in 45nm CMOS SOI [Z]. 2024 IEEE International Solid-State Circuits Conference (ISSCC). 2024: 218–20.https://doi.org/10.1109/isscc49657.2024.10454519.
|
[15] |
Netherton A, Dumont M, Nelson Z, et al. 25.1 Short-Reach Silicon Photonic Interconnects with Quantum Dot Mode Locked Laser Comb Sources [Z]. 2024 IEEE International Solid-State Circuits Conference (ISSCC). 2024: 422–4.https://doi.org/10.1109/isscc49657.2024.10454400.
|
[16] |
Levy CS, Xuan Z, Sharma J, et al. 8-λ × 50 Gbps/λ Heterogeneously Integrated Si-Ph DWDM Transmitter. IEEE J Solid-State Circuits. 2024;59:1–12.
|
[17] |
Shi Y, Li X, Chen G, et al. Avalanche photodiode with ultrahigh gain–bandwidth product of 1,033 GHz. Nat Photon. 2024;18(6):610–6.
|
[18] |
Jayatilleka H, Frish H, Kumar R, et al. Post-Fabrication Trimming of Silicon Photonic Ring Resonators at Wafer-Scale. J Light Technol. 2021;39(15):5083–8.
|
[19] |
Zhang W, Ebert M, Li K, et al. Harnessing plasma absorption in silicon MOS ring modulators. Nat Photon. 2023;17(3):273–9.
|
[20] |
Chan DWU, Wu X, Lu C, et al. Efficient 330-Gb/s PAM-8 modulation using silicon microring modulators. Opt Lett. 2023;48(4):1036–9.
|
[21] |
Zhang Y, Zhang H, Zhang J, et al. 240Gb/s optical transmission based on an ultrafast silicon microring modulator. Photonics Res. 2022;10(4):1127–33.
|
[22] |
Sakib M, Kumar R, Ma C X, et al. A 240 Gb/s PAM4 Silicon Micro-Ring Optical Modulator. 2022 Optical Fiber Communications Conference and Exhibition (Ofc), 2022.
|
[23] |
Milosevic MM, Chen X, Yu X, et al. Ion Implantation of germanium into silicon for critical coupling control of racetrack resonators. J Light Technol. 2020;38(7):1865–73.
|
[24] |
Milosevic MM, Chen X, Cao W, et al. Ion Implantation in silicon for trimming the operating wavelength of ring resonators. IEEE J Sel Top Quantum Electron. 2018;24(4):1–7.
|
[25] |
Chen B, Yu X, Chen X, et al. Real-time monitoring and gradient feedback enable accurate trimming of ion-implanted silicon photonic devices. Opt Express. 2018;26(19):24953–63.
|
[26] |
Lee H S, Kiravittaya S, Kumar S, et al. Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation. Applied Physics Letters, 2009, 95(19).
|
[27] |
Guo T, Zhang M, Yin Y, et al. A Laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators. IEEE Photon Technol Lett. 2017;29(5):419–22.
|
[28] |
Chen CJ, Zheng J, Gu T, et al. Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation. Opt Express. 2011;19(13):12480–9.
|
[29] |
Bachman D, Chen Z, Prabhu AM, et al. Femtosecond laser tuning of silicon microring resonators. Opt Lett. 2011;36(23):4695–7.
|
[30] |
Bachman D, Chen Z, Wang C, et al. Postfabrication phase error correction of silicon photonic circuits by single femtosecond laser pulses. J Light Technol. 2016;35(4):588–95.
|
[31] |
Canciamilla A, Morichetti F, Grillanda S, et al. Photo-induced trimming of chalcogenide-assisted silicon waveguides. Opt Express. 2012;20(14):15807–17.
|
[32] |
Lambert S, De Cort W, Beeckman J, et al. Trimming of silicon-on-insulator ring resonators with a polymerizable liquid crystal cladding. Opt Lett. 2012;37(9):1475–7.
|
[33] |
Meng J, Gui Y, Nouri BM, et al. Electrical programmable multilevel nonvolatile photonic random-access memory. Light Sci Appl. 2023;12(1):189.
|
[34] |
Chen R, Fang Z, Perez C, et al. Non-volatile electrically programmable integrated photonics with a 5-bit operation. Nat Commun. 2023;14(1):3465.
|
[35] |
Delaney M, Zeimpekis I, Lawson D, et al. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv Functional Mater. 2020;30:2002447.
|
[36] |
Fang Z, Mills B, Chen R, et al. Arbitrary programming of racetrack resonators using low-loss phase-change material Sb2Se3. Nano Lett. 2023;24(1):97–103.
|
[37] |
Fang Z, Chen R, Zheng J, et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nat Nanotechnol, 2022.
|
[38] |
Delaney M, Zeimpekis I, Du H, et al. Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material. Sci Adv. 2021;7(25):eabg3500.
|
[39] |
Zhang H, Xu L, Chen J, et al. Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation. IEEE Photonics J. 2018;10(1):1–10.
|
[40] |
Zheng J, Khanolkar A, Xu P, et al. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Optical Materials Express. 2018;8(6):1551.
|
[41] |
Zhang C, Wei M, Zheng J, et al. Nonvolatile multilevel switching of silicon photonic devices with In2O3/GST segmented structures. Adv Optic Mater. 2023;11(8):2202748.
|
[42] |
Xu P, Zheng J, Doylend JK, et al. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photonics. 2019;6(2):553–7.
|
[43] |
Li X, Youngblood N, Ríos C, et al. Fast and reliable storage using a 5bit, nonvolatile photonic memory cell. Optica. 2018;6(1):1–6.
|
[44] |
Zhang H, Zhou L, Xu J, et al. Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material. Sci Bull. 2019;64(11):782–9.
|
[45] |
Wu C, Yu H, Li H, et al. Low-loss integrated photonic switch using subwavelength patterned phase change material. ACS Photonics. 2018;6(1):87–92.
|
[46] |
Ríos C, Zhang Y, Shalaginov MY, et al. Multi-level electro-thermal switching of optical phase-change materials using graphene. Adv Photonics Res. 2020;2:2000034.
|
[47] |
Chen R, Fang Z, Fröch JE, et al. Broadband nonvolatile electrically controlled programmable units in silicon photonics. ACS Photonics. 2022;9(6):2142–50.
|
[48] |
Xia J, Wang Z, Yang R, et al. Ultrahigh endurance and extinction ratio in programmable silicon photonics based on a phase change material with ITO heater. Laser Photonics Rev. 2024;18(4):2300722.
|
[49] |
Wei M, Xu K, Tang B, et al. Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics. Nat Commun. 2024;15(1):2786.
|
[50] |
You JB, Kwon H, Kim J, et al. Photon-assisted tunneling for sub-bandgap light detection in silicon PN-doped waveguides. Opt Express. 2017;25(4):4284–97.
|
[51] |
Teo TY, Krbal M, Mistrik J, et al. Comparison and analysis of phase change materials-based reconfigurable silicon photonic directional couplers. Optical Mater Express. 2022;12(2):606–21.
|
[52] |
Zhang Y, Ríos C, Shalaginov M Y, et al. Myths and truths about optical phase change materials: a perspective. Appl Phys Lett. 2021, 118(21).
|
[53] |
Yang X, Nisar MS, Yuan W, et al. Phase change material enabled 2 x 2 silicon nonvolatile optical switch. Opt Lett. 2021;46(17):4224–7.
|