Turn off MathJax
Article Contents
Qin Chen, Hu Nie, Qinke Liu, Ning Tan, Ziwang Tuo, Jiahao Yan, Long Wen. Metasurface-engineered thermal emitters enabled chip-scale mid-infrared spectroscopic sensing[J]. PhotoniX. doi: 10.1186/s43074-025-00177-4
Citation: Qin Chen, Hu Nie, Qinke Liu, Ning Tan, Ziwang Tuo, Jiahao Yan, Long Wen. Metasurface-engineered thermal emitters enabled chip-scale mid-infrared spectroscopic sensing[J]. PhotoniX. doi: 10.1186/s43074-025-00177-4

Metasurface-engineered thermal emitters enabled chip-scale mid-infrared spectroscopic sensing

doi: 10.1186/s43074-025-00177-4
Funds:  We are grateful for financial supports from National Natural Science Foundation of China (Nos. 62220106001, 12374351), Guangdong Basic and Applied Basic Research Foundation (Nos. 2022B1515020069, 2023B1515020046), and the open project of the Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Soochow University (KJS2333).
  • Received Date: 2025-03-28
  • Accepted Date: 2025-06-17
  • Rev Recd Date: 2025-06-04
  • Available Online: 2025-07-01
  • Miniaturized spectroscopy techniques show great potentials in on-site applications, with most progress focused on manipulating the spectral responses of either dispersion elements or detectors. Little attention was paid on light sources, while light source and its optical collimation unit left unsaid in most miniaturized spectrometers actually dominate a majority of the footprint and the cost of the entire platform. Here, we demonstrate light-source engineering as a new paradigm for developing a miniaturized spectroscopic sensing platform in mid-infrared (MIR), where spectral information of the analyte is encoded in the MIR image of a chip-size thermal source. An array of angle-insensitive metasurface sub-emitters that operate at various wavelengths enables a straightforward sensing method by decoding an image of the radiation intensity distribution. Accurate and robust classification of organic solvents and drug sorting, as well as quantitative concentration measurement of mixed organic solutions, were experimentally demonstrated with an imaging angle tolerance up to 40º. Moreover, spectral imaging was explored using this device, achieving distinct images of a plastic covered steel ring. By integrating the functions of light source, dispersion element and collimation unit in conventional spectroscopy platforms into such a chip-size metasurface thermal emitter, the proposed miniaturized MIR spectral sensing technique shows promising potential for portable and on-site material analysis.
  • loading
  • [1]
    Savage N. Spectrometers. London: Nature Publishing Group UK; 2009.
    [2]
    Wang SW, Xia C, Chen X, Lu W, Li M, Wang H, Zheng W, Zhang T. Concept of a High-Resolution Miniature Spectrometer Using an Integrated Filter Array. Opt Lett. 2007;32(6):632–4.
    [3]
    Bao J, Bawendi MG. A Colloidal Quantum Dot Spectrometer. Nature. 2015;523(7558):67–70.
    [4]
    Wang Z, Yi S, Chen A, Zhou M, Luk TS, James A, Nogan J, Ross W, Joe G, Shahsafi A. Single-Shot on-Chip Spectral Sensors Based on Photonic Crystal Slabs. Nat Commun. 2019;10(1):1020.
    [5]
    Tittl A, Leitis A, Liu M, Yesilkoy F, Choi D-Y, Neshev DN, Kivshar YS, Altug H. Imaging-Based Molecular Barcoding with Pixelated Dielectric Metasurfaces. Science. 2018;360(6393):1105–9.
    [6]
    Yesilkoy F, Arvelo ER, Jahani Y, Liu M, Tittl A, Cevher V, Kivshar Y, Altug H. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat Photonics. 2019;13(6):390–6.
    [7]
    Chen Q, Liang L, Zheng Q, Zhang Y, Wen L. On-chip readout plasmonic mid-IR gas sensor. Opto-Electronic Advances. 2020;3(7): 190040.
    [8]
    Zheng Q, Nan X, Chen B, Wang H, Nie H, Gao M, Liu Z, Wen L, Cumming DRS, Chen Q. On-Chip Near-Infrared Spectral Sensing with Minimal Plasmon-Modulated Channels. Laser Photonics Rev. 2023;17(12):2300475.
    [9]
    Nan X, Lai W, Peng J, Wang H, Chen B, He H, Mo Z, Xia Z, Tan N, Liu Z, Wen L, Gao D, Chen Q. In situ photoelectric biosensing based on ultranarrowband near-infrared plasmonic hot electron photodetection. Advanced Photonics. 2024;6(2): 026007.
    [10]
    Nitkowski A, Chen L, Lipson M. Cavity-Enhanced on-Chip Absorption Spectroscopy Using Microring Resonators. Opt Express. 2008;16(16):11930–6.
    [11]
    Florjańczyk M, Cheben P, Janz S, Scott A, Solheim B, Xu D-X. Multiaperture Planar Waveguide Spectrometer Formed by Arrayed Mach-Zehnder Interferometers. Opt Express. 2007;15(26):18176–89.
    [12]
    Zheng SN, Zou J, Cai H, Song JF, Chin LK, Liu PY, Lin ZP, Kwong DL, Liu AQ. Microring Resonator-Assisted Fourier Transform Spectrometer with Enhanced Resolution and Large Bandwidth in Single Chip Solution. Nat Commun. 2019;10(1):2349.
    [13]
    Li A, Wang C, Bao F, Fang W, Liang Y, Cheng R, Pan S. An integrated single-shot spectrometer with large bandwidth-resolution ratio and wide operation temperature range. PhotoniX. 2023;4(1):29.
    [14]
    Yuan S, Naveh D, Watanabe K, Taniguchi T, Xia F. A Wavelength-Scale Black Phosphorus Spectrometer. Nat Photonics. 2021;15(8):601–7.
    [15]
    Yang Z, Albrow-Owen T, Cui H, Alexander-Webber J, Gu F, Wang X, Wu T-C, Zhuge M, Williams C, Wang P. Single-Nanowire Spectrometers. Science. 2019;365(6457):1017–20.
    [16]
    Wang J, Pan B, Wang Z, Zhang J, Zhou Z, Yao L, Wu Y, Ren W, Wang J, Ji H. Single-Pixel p-Graded-n Junction Spectrometers. Nature. Communications. 2024;15(1):1773.
    [17]
    Zhang W, Suo J, Dong K, Li L, Yuan X, Pei C, Dai Q. Handheld snapshot multi-spectral camera at tens-of-megapixel resolution. Nat Commun. 2023;14:5043.
    [18]
    Tang F, Wu J, Albrow-Owen T, Cui H, Chen F, Shi Y, Zou L, Chen J, Guo X, Sun Y, Luo J, Ju B, Huang J, Liu S, Li B, Yang L, Munro EA, Zheng W, Joyce HJ, Chen H, Che L, Dong S, Sun Z, Hasan T, Ye X, Yang Y, Yang Z. Metasurface spectrometers beyond resolution-sensitivity constraints. Science Advances. 2024;10:eadr7155.
    [19]
    Qu Y, Zhou Q, Xiang J, Yu Z. Sparsity for Ultrafast Material Identification. Laser Photonics Reviews. 2024;18:2300069.
    [20]
    Raman AP, Anoma MA, Zhu L, Rephaeli E, Fan S. Passive Radiative Cooling below Ambient Air Temperature under Direct Sunlight. Nature. 2014;515(7528):540–4.
    [21]
    Zhu H, Li Q, Zheng C, Hong Y, Xu Z, Wang H, Shen W, Kaur S, Ghosh P, Qiu M. High-Temperature Infrared Camouflage with Efficient Thermal Management. Light Sci Appl.  2020;9(1):60.
    [22]
    Wang H, Chen Q, Wen L, Song S, Hu X, Xu G. Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application. Photonics Research. 2015;3(6):329–34.
    [23]
    Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ. Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters. Phys Rev Lett. 2011;107(4): 045901.
    [24]
    Pralle MU, Moelders N, McNeal MP, Puscasu I, Greenwald AC, Daly JT, Johnson EA, George T, Choi DS, El-Kady I. Photonic Crystal Enhanced Narrow-Band Infrared Emitters. Appl Phys Lett. 2002;81(25):4685–7.
    [25]
    Schuller JA, Taubner T, Brongersma ML. Optical Antenna Thermal Emitters. Nat Photonics. 2009;3(11):658–61.
    [26]
    Wen L, Chen Y, Liu W, Su Q, Grant J, Qi Zhiyang, Wang Q, Chen Q. Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and omni-Schottky junction. Laser Photonics Rev. 2017;11(5):1700059.
    [27]
    Wen L, Sun Z, Zheng Q, Nan X, Lou Z, Liu Z, Cumming D, Li B, Chen Q. On-chip ultrasensitive and rapid hydrogen sensing based on plasmon-induced hot electron-molecule interaction.  Light Sci Appl. 2023;12(1):76.
    [28]
    Liang L, Hu X, Wen L, Zhu Y, Yang X, Zhou J, Zhang Y, Carranza I, Grant J, Jiang C, Cumming DRS, Li B, Chen Q. Unity integration of grating slot waveguide and microfluid for terahertz sensing. Laser Photonics Rev. 2018;12(11):1800078.
    [29]
    Hu X, Xu G, Wen L, Wang H, Zhao Y, Zhang Y, Cumming DRS, Chen Q. Metamaterial absorber integrated microfluidic terahertz sensors. Laser Photonics Rev. 2016;10(6):962–9.
    [30]
    Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S. Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram. Phys Rev Lett. 2015;115(23): 235503.
    [31]
    Chen Y, Hu S, Shen C, Zhang L, Yi C, Chen Y, Liu G-S, Chen L, Chen Z, Luo Y. Hyperbolic-Metamaterial-Based Optical Fiber SPR Sensor Enhanced by a Smart Hydrogel for Perspiration pH Measurements. Nano Lett. 2024;25(1):129–37.
    [32]
    Abbas MN, Cheng C-W, Chang Y-C, Shih M-H, Chen H-H, Lee S-C. Angle and Polarization Independent Narrow-Band Thermal Emitter Made of Metallic Disk on SiO2. Appl Phys Lett. 2011;98(12): 121116.
    [33]
    Zhu Y, Lei X, Wang KX, Yu Z. Compact CMOS Spectral Sensor for the Visible Spectrum. Photonics Research. 2019;7(9):961–6.
    [34]
    Zhou T, Huang S, Wen L, Chen Q. Integrated spectral detection based on lensless speckle image coding. Infrared and Laser Engineering. 2024;53(3):20240010.
    [35]
    Chen Q, Nan X, Chen M, Pan D, Yang X, Wen L. Nanophotonic color routing. Adv Mater. 2021;33(49):2103815.
    [36]
    Chen Q, Nan X, Liang W, Zheng Q, Sun Z, Wen L. Research progress of on-chip integrated optical sensing technology. Infrared and Laser Engineering. 2022;51(1):20210671.
    [37]
    Wen L, Liang L, Yang X, Liu Z, Li B, Chen Q. Multiband and ultrahigh figure-of-merit nanoplasmonic sensing with direct electrical readout in Au-Si nanojunctions. ACS Nano. 2019;13(6):6963–72.
    [38]
    Hakkel KD, Petruzzella M, Ou F, Klinken A, Pagliano F, Liu T, Veldhoven RP, Fiore A. Integrated near-infrared spectral sensing. Nature. Communications. 2022;13:103.
    [39]
    Tharwat A. Linear vs. Quadratic Discriminant Analysis Classifier: A Tutorial. Int J Appl Pattern Recognit. 2016;3(2):145–80.
    [40]
    Bishop CM, Nasrabadi NM. Pattern Recognition and Machine Learning. Springer. 2006;4:738.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (15) PDF downloads(1) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return