Turn off MathJax
Article Contents
Hongyu Lv, Chen Huo, Kenan Zhang, Qun Hao, Menglu Chen. In-situ grown polymer-ceramic scintillator and applications on X-ray multi-energy curved surface imaging[J]. PhotoniX. doi: 10.1186/s43074-025-00179-2
Citation: Hongyu Lv, Chen Huo, Kenan Zhang, Qun Hao, Menglu Chen. In-situ grown polymer-ceramic scintillator and applications on X-ray multi-energy curved surface imaging[J]. PhotoniX. doi: 10.1186/s43074-025-00179-2

In-situ grown polymer-ceramic scintillator and applications on X-ray multi-energy curved surface imaging

doi: 10.1186/s43074-025-00179-2
Funds:  M.C. appreciated the facilities supported by Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, Westlake Institute for Optoelectronics.
  • Received Date: 2025-05-08
  • Accepted Date: 2025-07-15
  • Rev Recd Date: 2025-06-19
  • Available Online: 2025-08-12
  • In-situ grown scintillators have attracted extensive attention in the field of high-resolution X-ray imaging due to their excellent film uniformity. In the process of in-situ growth, reasonable selection of polymer host is vital, which can effectively inhibit nanocrystal agglomeration and Ostwald ripening. Still, rationality and effective basis for polymer selection is lacked. Here, we propose a general in-situ growth method on a variety of perovskite with prototypical polymers. Both theoretical calculations and experimental results show that the performance of the in-situ grown film is improved by the electron-donating ability of the Lewis base functional group and the strength of the chemical bond in the polymer. Moreover, vitamins doping further reduce grain boundaries and adequately passivating the surface defects. Cs3Cu2I5 perovskite with polyvinyl alcohol host film exhibit yield of 55521 photons/MeV, spatial resolution of 14.0 lp mm−1 and long-term stability. Due to scintillator mechanical deformability, curved X-ray imaging has been achieved, overcoming planar sensor limitations in complex geometric applications. Benefiting from the universal applicability of this growth method, we synthesize a series of scintillators exhibiting distinct X-ray energy-dependent response. Through strategic architectural design of scintillator hetero-stacking, we achieve four-channel multispectral X-ray imaging across the 10 keV to 60 keV energy range.
  • loading
  • [1]
    Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, Wait E, Cohen AR, Davidson MW, Betzig E, Lippincott-Schwartz J. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature. 2017;546(7656):162–7.
    [2]
    Liu Y, Liu C, Shen K, Sun P, Li W, Zhao C, Ji Z, Mai Y, Mai W. Underwater multispectral computational imaging based on a broadband water-resistant Sb2Se3 heterojunction photodetector. ACS Nano. 2022;16(4):5820–9.
    [3]
    Makki I, Younes R, Francis C, Bianchi T, Zucchetti M. A survey of landmine detection using hyperspectral imaging. ISPRS JPRS. 2017;124:40–53.
    [4]
    Cucci C, Delaney JK, Picollo M. Reflectance hyperspectral imaging for investigation of works of art: old master paintings and illuminated manuscripts. Acc Chem Res. 2016;49(10):2070–9.
    [5]
    Stewart JW, Akselrod GM, Smith DR, Mikkelsen MH. Toward multispectral imaging with colloidal metasurface pixels. Adv Mater. 2017;29(6): 1602971.
    [6]
    Meng H, Gao Y, Wang X, Li X, Wang L, Zhao X, Sun B. Quantum dot-enabled infrared hyperspectral imaging with single-pixel detection. Light. 2024;13(1):121.
    [7]
    Ran P, Yao Q, Hui J, Su Y, Yang L, Kuang C, Liu X, Yang Y. Multi-energy X-ray linear-array detector enabled by the side-illuminated metal halide scintillator. Laser Photonics Rev. 2024;18(1):2300587.
    [8]
    Ran P, Yang L, Jiang T, Xu X, Hui J, Su Y, Kuang C, Liu X, Yang Y. Multispectral large-panel X-ray imaging enabled by stacked metal halide scintillators. Adv Mater. 2022;34(42): 2205458.
    [9]
    Hui J, Ran P, Su Y, Yang L, Xu X, Liu T, Gu Y, She X, Yang Y. Stacked scintillators based multispectral X-ray imaging featuring quantum-cutting perovskite scintillators with 570 nm absorption-emission shift. Adv Mater. 2025;37:2416360.
    [10]
    Bu W, Yan Y, Liu P, Wang T, Wang S, Yue Y, Zhu N, Zhu X, Yang L, Mou D, Yu X. In-situ growth of Cs5Cu3Cl6I2 nanocrystals within AAO arrays for X-ray imaging. Chem Eng J. 2024;492: 151908.
    [11]
    Wong YC, De Andrew NJ, Tan ZK. Perovskite-initiated photopolymerization for singly dispersed luminescent nanocomposites. Adv Mater. 2018;30(21):1800774.
    [12]
    Yeo JS, Cho EH, Woo JY, Park YM, Han JH, Kim D, Im W, Han TH. Stretchable primary-blue color-conversion layer: in situ crystallization of phase-engineered perovskite nanocrystals in an organic matrix. ACS Nano. 2024;19(1):406–7.
    [13]
    Erroi A, Mecca S, Zaffalon ML, Frank I, Carulli F, Cemmi A, Sarcina I, Debellis D, Rossi F, Cova F, Pauwels K, Mauri M, Perego J, Pinchetti V, Comotti A, Meinardi F, Vedda A, Auffray E, Beverina L, Brovelli S. Ultrafast and radiation-hard lead halide perovskite nanocomposite scintillators. ACS Energy Lett. 2023;8(9):3883–94.
    [14]
    Zhou W, Zhu X, Yu J, Mou D, Li H, Kong L, Lang T, Peng L, Chen W, Xu X, Liu B. High-quality Cs3Cu2I5@ PMMA scintillator films assisted by multiprocessing for X-ray imaging. ACS Appl Mater Interfaces. 2023;15(32):38741–9.
    [15]
    Meng H, Li Y, Wang Y, Zhu M, Xiao J, Shen G. Highly efficient flexible antimony halide scintillator films with in situ preparation for high-resolution X-ray imaging. Laser Photonics Rev. 2025;19(4):2401703.
    [16]
    Shi J, Wang Z, Xu L, Wang J, Da Z, Zhang C, Ji Y, Yao Q, Xu Y, Gaponenko NV, Tian J, Wang M. In situ growth of lead-free double perovskite micron sheets in polymethyl methacrylate for X-ray imaging. Advanced Optical Materials. 2024;12(22): 2400691.
    [17]
    Wang M, Qing X, Du T, Wu C, Han X. Te4+-doped Cs2SnCl6 scintillator for flexible and efficient X-ray imaging screens. J Mater Chem C. 2024;12(6):2241–6.
    [18]
    Chen W, Zhou M, Liu Y, Yu X, Pi C, Yang Z, Zhang H, Liu Z, Wang T, Qiu J, Yu S, Yang Y, Xu X. All-Inorganic perovskite polymer-ceramics for flexible and refreshable X-ray imaging. Adv Funct Mater. 2022;32(2): 2107424.
    [19]
    Li R, Zhu W, Wang H, Jiao Y, Gao Y, Gao R, Wang R, Chao H, Yu A, Liu X. Ultrastable and flexible glass-ceramic scintillation films with reduced light scattering for efficient X-ray imaging. NPJ Flex Electron. 2024;8(1):31.
    [20]
    Wang M, Zhao Y, Jiang X, Yin Y, Yavuz I, Zhu P, Zhang A, Han G, Jung H, Zhou Y, Yang W, Bian J, Jin S, Lee JW, Yang Y. Rational selection of the polymeric structure for interface engineering of perovskite solar cells. Joule. 2022;6(5):1032–48.
    [21]
    Li X, Sheng W, Duan X, Lin Z, Yang J, Tan L, Chen Y. Defect passivation effect of chemical groups on perovskite solar cells. ACS Appl Mater Interfaces. 2021;14(30):34161–70.
    [22]
    Xiong J, Eedugurala N, Qi Y, Liu W, Benasco AR, Zhang Q, Morgan SE, Blanton MD, Azoulay JD, Dai Q. Efficient and stable perovskite solar cells via shortwave infrared polymer passivation. Sol Energy Mater Sol Cells. 2021;220: 110862.
    [23]
    Xu Y, Wang S, Liu H, Li X. Microencapsulated perovskite crystals via in situ permeation growth from polymer microencapsulation-expansion-contraction strategy: advancing a record long-term stability beyond 10000 h for perovskite solar cells. Adv Mater. 2024;36(18): 2313080.
    [24]
    Song L, Guo X, Hu Y, Lv Y, Lin J, Liu Z, Fan Y, Liu X. Efficient inorganic perovskite light-emitting diodes with polyethylene glycol passivated ultrathin CsPbBr3 films. J Phys Chem Lett. 2017;8(17):4148–54.
    [25]
    Han TH, Lee JW, Choi C, Tan S, Lee C, Zhao Y, Dai Z, Marco N, Lee SJ, Bae SH, Yuan Y, Lee H, Huang Y, Yang Y. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat Commun. 2019;10(1):520.
    [26]
    Chen T, Xie J, Wen B, Yin Q, Lin R, Zhu S, Gao P. Inhibition of defect-induced α-to-δ phase transition for efficient and stable formamidinium perovskite solar cells. Nat Commun. 2023;14(1):6125.
    [27]
    Zhao Y, Zhu P, Huang S, Tan S, Wang M, Wang R, Xue J, Han TH, Lee SJ, Zhang A, Huang T, Cheng P, Meng D, Lee JW, Marian J, Zhu J, Yang Y. Molecular interaction regulates the performance and longevity of defect passivation for metal halide perovskite solar cells. J Am Chem Soc. 2020;142:20071.
    [28]
    Petrov AA, Ordinartsev AA, Fateev SA, Goodilin EA, Tarasov AB. Solubility of hybrid halide perovskites in DMF and DMSO. Molecules. 2021;26(24):7541.
    [29]
    Cao XB, Li CL, Zhi LL, Li YH, Cui X, Yao YW, Ci LJ, Wei JQ. Fabrication of high quality perovskite films by modulating the Pb-O bonds in Lewis acid-base adducts. J Mater Chem A. 2017;5(18):8416–22.
    [30]
    Chen G, Wang S, Yu Z, Dong C, Jia P, Pu D, Dong K, Cui H, Fang H, Wang C, Gao R, Yao F, Ke W, Fang G. Regulation of nucleation and crystallization for blade-coating large-area CsPbBr3 perovskite light-emitting diodes. Sci Bull. 2024;70(2):212–22.
    [31]
    Lee J, Yang J, Kwon SG, Hyeon T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat Rev Mater. 2016;1(8):1–16.
    [32]
    Ma C, Kang MC, Lee SH, Kwon SJ, Cha HW, Yang CW, Park NG. Photovoltaically top-performing perovskite crystal facets. Joule. 2022;6(11):2626–43.
    [33]
    Du B, Wei Q, Cai Y, Liu T, Wu B, Li Y, Chen Y, Xia Y, Xing G, Huang W. Crystal face dependent charge carrier extraction in TiO2/perovskite heterojunctions. Nano Energy. 2020;67:104227.
    [34]
    Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu JM, Bonnassieux Y, Katan C, Stoumpos CC, Kanatzidis MG, Even J. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano. 2018;12(4):3477–86.
    [35]
    Chen M, Niu T, Chao L, Duan X, Wang J, Pan T, Li Y, Zhang J, Wang C, Ren B, Guo L, Hatamvand M, Zhang J, Guo Q, Xia Y, Gao C, Chen Y. “Freezing” intermediate phases for efficient and stable FAPbI3 perovskite solar cells. Energy Environ Sci. 2024;17(10):3375–83.
    [36]
    Min H, Chang J, Tong Y, Wang J, Zhang F, Feng Z, Bi X, Chen N, Kuang Z, Wang S, Yuan L, Shi H, Zhao N, Qian D, Xu S, Zhu L, Wang N, Huang W, Wang J. Additive treatment yields high-performance lead-free perovskite light-emitting diodes. Nat Photonics. 2023;17(9):755–60.
    [37]
    Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J, Hosono H. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv Mater. 2018;30:1804547.
    [38]
    Tsuji M, Sasase M, Iimura S, Kim J, Hosono H. Room-temperature solid-state synthesis of Cs3Cu2I5 thin films and formation mechanism for its unique local structure. J Am Chem Soc. 2023;145(21):11650–8.
    [39]
    Cheng P, Sun L, Feng L, Yang S, Yang Y, Zheng D, Zhao Y, Sang Y, Zhang R, Wei D, Deng W, Han K. Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals. Angew Chem Int Ed. 2019;131(45):16233–7.
    [40]
    Zatryb G, Klak MM. On the choice of proper average lifetime formula for an ensemble of emitters showing non-single exponential photoluminescence decay. Matter. 2020;32(41): 415902.
    [41]
    Li X, Chen J, Yang D, Chen X, Geng D, Jiang L, Wu Y, Meng C, Zeng H. Mn2+ induced significant improvement and robust stability of radioluminescence in Cs3Cu2I5 for high-performance nuclear battery. Nat Commun. 2021;12(1):3879.
    [42]
    Miao Y, Sathiyan G, Wang H, Ding X, Zhai M, Yang C, Liu L, Xia Z, Chen C, Cheng M. Enhancing the performance of perovskite solar cells through simple bilateral active site molecule assisted surface defect passivation. Chem Eng J. 2022;432: 134223.
    [43]
    Ji S, Jian L, Xiao L, Lei X, Yu D, Hai Z. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater. 2015;27(44):7162–7.
    [44]
    Wei Z, Rui L, Xiao L, Xu X, Hong C, Hao W, Yi J, Hao L, Feng X, Zhen N, Yuan G, Ri W, Ji Z, Wei H. Photophysical properties of copper halides with strongly confined excitons and their high-performance X-ray imaging. Adv Funct Mater. 2024;34(26): 2316449.
    [45]
    Liu H, Liu T, Wang X, Hu G, Zheng B, Yu X, Wang Y, Yang D. Surface formamidine cation immobilization for efficient FA-based perovskites solar cells. Advanced Energy Materials. 2024;14(44): 2401809.
    [46]
    Zhou H, Cai K, Yu S, Wang Z, Xiong Z, Chu Z, Chu X, Jiang Q, You J. Efficient and stable perovskite mini-module via high-quality homogeneous perovskite crystallization and improved interconnect. Nat Commun. 2024;15(1):6679.
    [47]
    Min S, Choi S, Pajovic S, Vaidya S, Rivera N, Fan S, Soljačić M, Roques-Carmes C. End-to-end design of multicolor scintillators for enhanced energy resolution in X-ray imaging. Light. 2025;14(1):158.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return