Turn off MathJax
Article Contents
Qihong Hu, Jieyi Zhang, Ramya Emusani, Junchao Yang, Xin Zuo, Yiran Wang, Yonggang Huang, Dong Xiang. Surface plasmon driven atomic migration mediated by molecular monolayer[J]. PhotoniX. doi: 10.1186/s43074-025-00190-7
Citation: Qihong Hu, Jieyi Zhang, Ramya Emusani, Junchao Yang, Xin Zuo, Yiran Wang, Yonggang Huang, Dong Xiang. Surface plasmon driven atomic migration mediated by molecular monolayer[J]. PhotoniX. doi: 10.1186/s43074-025-00190-7

Surface plasmon driven atomic migration mediated by molecular monolayer

doi: 10.1186/s43074-025-00190-7
Funds:  We acknowledge funding from the National Key R&D Program of China (2021YFA1200103), the National Natural Science Foundation of China (22273041, 12174201), the Natural Science Foundation of Tianjin (19JCZDJC31000, 19JCJQJC60900, 22JCYBJC01310).
  • Received Date: 2025-05-20
  • Accepted Date: 2025-08-18
  • Rev Recd Date: 2025-08-04
  • Available Online: 2025-09-01
  • Highly efficient controlling the individual atomic migration is the basis of the modern atomic manufacturing. Although one-by-one atom migration can be realized precisely by STM technique, such a delicate operation is time consuming and restrictive conditions (e.g., high-vacuum) needed to be satisfied. Here, we reported that individual metal atoms can be efficiently transferred from the nanoparticle surface to the underneath substrate via instantaneous laser irradiation under ambient conditions. By inserting self-assembled monolayer (SAM) molecules into nanoparticle-on-mirror (NPoM) structures, a pronounced resonance shift that depends on the dipole moments of the SAM molecules, was observed upon laser irradiation. Assisted by the in-situ measurement of Raman spectra, synchronously capturing dark-field (DF) scattering spectra and DF imaging, it is clarified that the laser-induced localized surface plasmons, which generates strong dipole–dipole interactions, play a critical role in triggering atomic migration. Our study opens an avenue for the highly efficient fabrication of atomic patterns.
  • loading
  • [1]
    Xiang D, Wang X, Jia C, Lee T, Guo X. Molecular-scale electronics: from concept to function. Chem Rev. 2016;116(7):4318–440.
    [2]
    Savage KJ, Hawkeye MM, Esteban R, Borisov AG, Aizpurua J, Baumberg JJ. Revealing the quantum regime in tunnelling plasmonics. Nature. 2012;491(7425):574–7.
    [3]
    Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature. 2021;589(7840):52–8.
    [4]
    Baumberg JJ, Aizpurua J, Mikkelsen MH, Smith DR. Extreme nanophotonics from ultrathin metallic gaps. Nat Mater. 2019;18(7):668–78.
    [5]
    Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics. 2008;2(8):496–500.
    [6]
    Baranov DG, Wersäll M, Cuadra J, Antosiewicz TJ, Shegai T. Novel nanostructures and materials for strong light-matter interactions. ACS Photon. 2017;5(1):24–42.
    [7]
    Baumberg JJ. Picocavities: a primer. Nano Lett. 2022;22(14):5859–65.
    [8]
    Wang M, Wang T, Ojambati OS, Duffin TJ, Kang K, Lee T, et al. Plasmonic phenomena in molecular junctions: principles and applications. Nat Rev Chem. 2022;6(10):681–704.
    [9]
    Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat Photon. 2010;4(2):83–91.
    [10]
    Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater. 2010;9(3):193–204.
    [11]
    Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424(6950):824–30.
    [12]
    Yang YX, Chu JP. Cost-effective large-area Ag nanotube arrays for SERS detections: effects of nanotube geometry. Nanotechnology. 2021;32(47):475504.
    [13]
    Langer J, de Aberasturi DJ, Aizpurua J, Alvarez-Puebla RA, Auguie B, Baumberg JJ, et al. Present and future of surface-enhanced raman scattering. ACS Nano. 2020;14(1):28–117.
    [14]
    Koya AN, Li W. Multifunctional charge transfer plasmon resonance sensors. Nanophotonics. 2023;12(12):2103–13.
    [15]
    Liu X, Dang A, Li T, Sun Y, Lee TC, Deng W, et al. Plasmonic coupling of Au nanoclusters on a flexible MXene/graphene oxide fiber for ultrasensitive SERS sensing. ACS Sens. 2023;8(3):1287–98.
    [16]
    Lee YY, Kim RM, Im SW, Balamurugan M, Nam KT. Plasmonic metamaterials for chiral sensing applications. Nanoscale. 2020;12(1):58–66.
    [17]
    Kang G, Hu S, Guo C, Arul R, Sibug-Torres SM, Baumberg JJ. Design rules for catalysis in single-particle plasmonic nanogap reactors with precisely aligned molecular monolayers. Nat Commun. 2024;15(1):9220.
    [18]
    Ma XC, Dai Y, Yu L, Huang BB. Energy transfer in plasmonic photocatalytic composites. Light Sci Appl. 2016;5(2):e16017.
    [19]
    Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, et al. Plasmon lasers at deep subwavelength scale. Nature. 2009;461(7264):629–32.
    [20]
    Xu X, Qi Q, Hu Q, Ma L, Emusani R, Zhang S, et al. Manipulating pi-pi Interactions between Single Molecules by Using Antenna Electrodes as Optical Tweezers. Phys Rev Lett. 2024;133(23):233001.
    [21]
    Juan ML, Righini M, Quidant R. Plasmon nano-optical tweezers. Nat Photonics. 2011;5(6):349–56.
    [22]
    Zhang Y, Min C, Dou X, Wang X, Urbach HP, Somekh MG, et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci Appl. 2021;10(1):59.
    [23]
    Yang B, Chen G, Ghafoor A, Zhang Y, Zhang Y, Zhang Y, et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat Photonics. 2020;14(11):693–9.
    [24]
    Lee J, Crampton KT, Tallarida N, Apkarian VA. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature. 2019;568(7750):78–82.
    [25]
    Lin QQ, Hu S, Földes T, Huang JY, Wright D, Griffiths J, et al. Optical suppression of energy barriers in single molecule-metal binding. Sci Adv. 2022;8(25):eabp9285.
    [26]
    Guo C, Benzie P, Hu S, de Nijs B, Miele E, Elliott E, et al. Extensive photochemical restructuring of molecule-metal surfaces under room light. Nat Commun. 2024;15(1):1928.
    [27]
    Xomalis A, Chikkaraddy R, Oksenberg E, Shlesinger I, Huang J, Garnett EC, et al. Controlling optically driven atomic migration using crystal-facet control in plasmonic nanocavities. ACS Nano. 2020;14(8):10562–8.
    [28]
    Liu N, Hentschel M, Weiss T, Alivisatos AP, Giessen H. Three-dimensional plasmon rulers. Science. 2011;332(6036):1407–10.
    [29]
    Tabor C, Murali R, Mahmoud M, El-Sayed MA. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. J Phys Chem A. 2009;113(10):1946–53.
    [30]
    Hill RT, Mock JJ, Hucknall A, Wolter SD, Jokerst NM, Smith DR, et al. Plasmon ruler with angstrom length resolution. ACS Nano. 2012;6(10):9237–46.
    [31]
    Elliott E, Bedingfield K, Huang JY, Hu S, de Nijs B, Demetriadou A, et al. Fingerprinting the hidden facets of plasmonic nanocavities. ACS Photonics. 2022;9(8):2643–51.
    [32]
    Yao J, Li Y, Wang S, Ding T. Thin-film-assisted photothermal deformation of gold nanoparticles: a facile and in-situ strategy for single-plate-based devices. ACS Nano. 2024;18(15):10618–24.
    [33]
    Abraham U. Formation and structure of self-assembled monolayers. Chem Rev. 1996;96(4):1533–54.
    [34]
    Wang M, Zhang J, Adijiang A, Zhao X, Tan M, Xu X, et al. Plasmon-assisted trapping of single molecules in nanogap. Materials. 2023;16(8):3230.
    [35]
    Zhan C, Wang G, Yi J, Wei J-Y, Li Z-H, Chen Z-B, et al. Single-molecule plasmonic optical trapping. Matter. 2020;3(4):1350–60.
    [36]
    Zhao X, Yan Y, Tan M, Zhang S, Xu X, Zhao Z, et al. Molecular dimer junctions forming: role of disulfide bonds and electrode-compression-time. SmartMat. 2024;5(4):e1280.
    [37]
    Ciracì C. Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory. Phys Rev B. 2017;95(24):245434.
    [38]
    Li WC, Zhou Q, Zhang P, Chen XW. Direct electro plasmonic and optic modulation via a nanoscopic electron reservoir. Phys Rev Lett. 2022;128(21):217401.
    [39]
    Zhou Q, Li WC, He Z, Zhang P, Chen XW. Quantum hydrodynamic model for noble metal nanoplasmonics. Phys Rev B. 2023;107(20):205413.
    [40]
    Liu R, Bi J-J, Xie Z, Yin K, Wang D, Zhang G-P, et al. Fabricating atom-sized gaps by field-aided atom migration in nanoscale junctions. Phys Rev A. 2018;9(5):054023.
    [41]
    Zhang X, Zhao Z, Zhang S, Adijiang A, Zhao T, Tan M, et al. In situ reconnection of nanoelectrodes over 20 nm gaps on polyimide substrate. Small Structures. 2024;5(2):2300283.
    [42]
    Choi HK, Park WH, Park CG, Shin HH, Lee KS, Kim ZH. Metal-catalyzed chemical reaction of single molecules directly probed by vibrational spectroscopy. J Am Chem Soc. 2016;138(13):4673–84.
    [43]
    Mueller NS, Arul R, Jakob LA, Blunt MO, Földes T, Rosta E, et al. Collective mid-infrared vibrations in surface-enhanced Raman scattering. Nano Lett. 2022;22(17):7254–60.
    [44]
    Huang YF, Zhu HP, Liu GK, Wu DY, Ren B, Tian ZQ. When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J Am Chem Soc. 2010;132(27):9244–6.
    [45]
    Teodorescu CM. Image molecular dipoles in surface enhanced Raman scattering. Phys Chem Chem Phys. 2015;17(33):21302–14.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (13) PDF downloads(0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return