Citation: | Qihong Hu, Jieyi Zhang, Ramya Emusani, Junchao Yang, Xin Zuo, Yiran Wang, Yonggang Huang, Dong Xiang. Surface plasmon driven atomic migration mediated by molecular monolayer[J]. PhotoniX. doi: 10.1186/s43074-025-00190-7 |
[1] |
Xiang D, Wang X, Jia C, Lee T, Guo X. Molecular-scale electronics: from concept to function. Chem Rev. 2016;116(7):4318–440.
|
[2] |
Savage KJ, Hawkeye MM, Esteban R, Borisov AG, Aizpurua J, Baumberg JJ. Revealing the quantum regime in tunnelling plasmonics. Nature. 2012;491(7425):574–7.
|
[3] |
Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature. 2021;589(7840):52–8.
|
[4] |
Baumberg JJ, Aizpurua J, Mikkelsen MH, Smith DR. Extreme nanophotonics from ultrathin metallic gaps. Nat Mater. 2019;18(7):668–78.
|
[5] |
Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics. 2008;2(8):496–500.
|
[6] |
Baranov DG, Wersäll M, Cuadra J, Antosiewicz TJ, Shegai T. Novel nanostructures and materials for strong light-matter interactions. ACS Photon. 2017;5(1):24–42.
|
[7] |
Baumberg JJ. Picocavities: a primer. Nano Lett. 2022;22(14):5859–65.
|
[8] |
Wang M, Wang T, Ojambati OS, Duffin TJ, Kang K, Lee T, et al. Plasmonic phenomena in molecular junctions: principles and applications. Nat Rev Chem. 2022;6(10):681–704.
|
[9] |
Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat Photon. 2010;4(2):83–91.
|
[10] |
Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater. 2010;9(3):193–204.
|
[11] |
Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424(6950):824–30.
|
[12] |
Yang YX, Chu JP. Cost-effective large-area Ag nanotube arrays for SERS detections: effects of nanotube geometry. Nanotechnology. 2021;32(47):475504.
|
[13] |
Langer J, de Aberasturi DJ, Aizpurua J, Alvarez-Puebla RA, Auguie B, Baumberg JJ, et al. Present and future of surface-enhanced raman scattering. ACS Nano. 2020;14(1):28–117.
|
[14] |
Koya AN, Li W. Multifunctional charge transfer plasmon resonance sensors. Nanophotonics. 2023;12(12):2103–13.
|
[15] |
Liu X, Dang A, Li T, Sun Y, Lee TC, Deng W, et al. Plasmonic coupling of Au nanoclusters on a flexible MXene/graphene oxide fiber for ultrasensitive SERS sensing. ACS Sens. 2023;8(3):1287–98.
|
[16] |
Lee YY, Kim RM, Im SW, Balamurugan M, Nam KT. Plasmonic metamaterials for chiral sensing applications. Nanoscale. 2020;12(1):58–66.
|
[17] |
Kang G, Hu S, Guo C, Arul R, Sibug-Torres SM, Baumberg JJ. Design rules for catalysis in single-particle plasmonic nanogap reactors with precisely aligned molecular monolayers. Nat Commun. 2024;15(1):9220.
|
[18] |
Ma XC, Dai Y, Yu L, Huang BB. Energy transfer in plasmonic photocatalytic composites. Light Sci Appl. 2016;5(2):e16017.
|
[19] |
Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, et al. Plasmon lasers at deep subwavelength scale. Nature. 2009;461(7264):629–32.
|
[20] |
Xu X, Qi Q, Hu Q, Ma L, Emusani R, Zhang S, et al. Manipulating pi-pi Interactions between Single Molecules by Using Antenna Electrodes as Optical Tweezers. Phys Rev Lett. 2024;133(23):233001.
|
[21] |
Juan ML, Righini M, Quidant R. Plasmon nano-optical tweezers. Nat Photonics. 2011;5(6):349–56.
|
[22] |
Zhang Y, Min C, Dou X, Wang X, Urbach HP, Somekh MG, et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci Appl. 2021;10(1):59.
|
[23] |
Yang B, Chen G, Ghafoor A, Zhang Y, Zhang Y, Zhang Y, et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat Photonics. 2020;14(11):693–9.
|
[24] |
Lee J, Crampton KT, Tallarida N, Apkarian VA. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature. 2019;568(7750):78–82.
|
[25] |
Lin QQ, Hu S, Földes T, Huang JY, Wright D, Griffiths J, et al. Optical suppression of energy barriers in single molecule-metal binding. Sci Adv. 2022;8(25):eabp9285.
|
[26] |
Guo C, Benzie P, Hu S, de Nijs B, Miele E, Elliott E, et al. Extensive photochemical restructuring of molecule-metal surfaces under room light. Nat Commun. 2024;15(1):1928.
|
[27] |
Xomalis A, Chikkaraddy R, Oksenberg E, Shlesinger I, Huang J, Garnett EC, et al. Controlling optically driven atomic migration using crystal-facet control in plasmonic nanocavities. ACS Nano. 2020;14(8):10562–8.
|
[28] |
Liu N, Hentschel M, Weiss T, Alivisatos AP, Giessen H. Three-dimensional plasmon rulers. Science. 2011;332(6036):1407–10.
|
[29] |
Tabor C, Murali R, Mahmoud M, El-Sayed MA. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. J Phys Chem A. 2009;113(10):1946–53.
|
[30] |
Hill RT, Mock JJ, Hucknall A, Wolter SD, Jokerst NM, Smith DR, et al. Plasmon ruler with angstrom length resolution. ACS Nano. 2012;6(10):9237–46.
|
[31] |
Elliott E, Bedingfield K, Huang JY, Hu S, de Nijs B, Demetriadou A, et al. Fingerprinting the hidden facets of plasmonic nanocavities. ACS Photonics. 2022;9(8):2643–51.
|
[32] |
Yao J, Li Y, Wang S, Ding T. Thin-film-assisted photothermal deformation of gold nanoparticles: a facile and in-situ strategy for single-plate-based devices. ACS Nano. 2024;18(15):10618–24.
|
[33] |
Abraham U. Formation and structure of self-assembled monolayers. Chem Rev. 1996;96(4):1533–54.
|
[34] |
Wang M, Zhang J, Adijiang A, Zhao X, Tan M, Xu X, et al. Plasmon-assisted trapping of single molecules in nanogap. Materials. 2023;16(8):3230.
|
[35] |
Zhan C, Wang G, Yi J, Wei J-Y, Li Z-H, Chen Z-B, et al. Single-molecule plasmonic optical trapping. Matter. 2020;3(4):1350–60.
|
[36] |
Zhao X, Yan Y, Tan M, Zhang S, Xu X, Zhao Z, et al. Molecular dimer junctions forming: role of disulfide bonds and electrode-compression-time. SmartMat. 2024;5(4):e1280.
|
[37] |
Ciracì C. Current-dependent potential for nonlocal absorption in quantum hydrodynamic theory. Phys Rev B. 2017;95(24):245434.
|
[38] |
Li WC, Zhou Q, Zhang P, Chen XW. Direct electro plasmonic and optic modulation via a nanoscopic electron reservoir. Phys Rev Lett. 2022;128(21):217401.
|
[39] |
Zhou Q, Li WC, He Z, Zhang P, Chen XW. Quantum hydrodynamic model for noble metal nanoplasmonics. Phys Rev B. 2023;107(20):205413.
|
[40] |
Liu R, Bi J-J, Xie Z, Yin K, Wang D, Zhang G-P, et al. Fabricating atom-sized gaps by field-aided atom migration in nanoscale junctions. Phys Rev A. 2018;9(5):054023.
|
[41] |
Zhang X, Zhao Z, Zhang S, Adijiang A, Zhao T, Tan M, et al. In situ reconnection of nanoelectrodes over 20 nm gaps on polyimide substrate. Small Structures. 2024;5(2):2300283.
|
[42] |
Choi HK, Park WH, Park CG, Shin HH, Lee KS, Kim ZH. Metal-catalyzed chemical reaction of single molecules directly probed by vibrational spectroscopy. J Am Chem Soc. 2016;138(13):4673–84.
|
[43] |
Mueller NS, Arul R, Jakob LA, Blunt MO, Földes T, Rosta E, et al. Collective mid-infrared vibrations in surface-enhanced Raman scattering. Nano Lett. 2022;22(17):7254–60.
|
[44] |
Huang YF, Zhu HP, Liu GK, Wu DY, Ren B, Tian ZQ. When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J Am Chem Soc. 2010;132(27):9244–6.
|
[45] |
Teodorescu CM. Image molecular dipoles in surface enhanced Raman scattering. Phys Chem Chem Phys. 2015;17(33):21302–14.
|