Turn off MathJax
Article Contents
Kailin Zhao, Qin Guo, Lan Jiang, Yansong Zhang, Shuhui Jiao, Jie Hu, Qian Cheng, Xun Cao, Weina Han. Adaptive infrared thermal camouflage of multi-layer PCMs devices via laser-electric co-modulation driven by neural network[J]. PhotoniX. doi: 10.1186/s43074-025-00199-y
Citation: Kailin Zhao, Qin Guo, Lan Jiang, Yansong Zhang, Shuhui Jiao, Jie Hu, Qian Cheng, Xun Cao, Weina Han. Adaptive infrared thermal camouflage of multi-layer PCMs devices via laser-electric co-modulation driven by neural network[J]. PhotoniX. doi: 10.1186/s43074-025-00199-y

Adaptive infrared thermal camouflage of multi-layer PCMs devices via laser-electric co-modulation driven by neural network

doi: 10.1186/s43074-025-00199-y
Funds:  National Natural Science Foundation of China (NSFC) (grant 52375401, 52350362, 52235009, and 22379012), National Key Research and Development Program of China (2024YFB4609100), Chongqing Natural Science Foundation of China (grants cstc2021jcyj-cxttX0003), State Key Laboratory of High-performance Precision Manufacturing (grant HPMKF202411).
  • Received Date: 2025-04-24
  • Accepted Date: 2025-09-20
  • Rev Recd Date: 2025-08-21
  • Available Online: 2025-10-16
  • Infrared thermal camouflage technologies are vital for enhancing the survivability of objects by altering their infrared radiation properties. However, existing solutions often fall short in adaptability and rapid responsiveness to dynamic environmental conditions, limiting their practical applicability. To overcome these challenges, we present an innovative approach combining ultrafast laser-induced non-volatile phase-change Ge2Sb2Te5 (GST) voxel-crystallized units with electrically tunable volatile VO2 layers. This integration enables precise, continuous control of infrared emissivity across a wide range of 0.14 to 0.98, effectively encompassing the emissivity of most materials. A neural network-based closed-loop system is employed for sensing, intelligent decision-making, and execution, achieving real-time thermal radiation matching between the target and its environment with a response speed of 3 °C/s and an accuracy of ± 1 °C. This strategy significantly enhances the adaptability of thermal camouflage in complex environments, paving the way for practical, dynamic thermal stealth applications.
  • loading
  • [1]
    Boyd RW. Radiometry and the Detection of Optical Radiation. 1st ed. Hoboken: Wiley; 1983.
    [2]
    Chalmers JM, Griffiths PR. Handbook of Vibrational Spectroscopy. 1st ed. Hoboken: Wiley; 2006.
    [3]
    Hong S, Shin S, Chen R. An adaptive and wearable thermal camouflage device. Adv Funct Mater. 2020;30:1909788.
    [4]
    King JL, Shahsafi A, Zhang Z, Wan C, Xiao Y, Huang C, et al. Wavelength-by-wavelength temperature-independent thermal radiation utilizing an insulator-metal transition. ACS Photonics. 2022;9(8):2742–7.
    [5]
    Qin B, Zhu HZ, Zhu RX, Zhao M, Qiu M, Li Q. Space-to-ground infrared camouflage with radiative heat dissipation. Light Sci Appl. 2025;14:137.
    [6]
    Dai C, Zhu HZ, Qin R, Qin B, Zhao M, Ghosh P, et al. Approaching the thermal emissivity limit with ultrathin MXene films. Optica. 2025;12:685–92.
    [7]
    Wang P, Sun Y, Zhang YF, Wang HQ, Zhang YR, Xiao CY, et al. Programmable wire metamaterials for visible and self-adaptive infrared camouflage. Adv Mater. 2025;37:2503587.
    [8]
    Kim Y, Kim C, Lee M. Parallel laser printing of a thermal emission pattern in a phase-change thin film cavity for infrared camouflage and security. Laser Photon Rev. 2022;16:2100545.
    [9]
    Zhang ZC, Wang QY, Li ZF, Zhou Z, Xie XY, Sun HC, et al. A skin-beyond multifrequency camouflage system with self-adaptive discoloration and radar-infrared stealth. Chem Eng J. 2024;494:152867.
    [10]
    Howell JR, Mengüc MP, Daun K, Siegel R. Thermal Radiation Heat Transfer. 7th ed. Boca Raton: CRC Press; 2020.
    [11]
    Zhang Q, Lv YW, Wang YF, Yu SX, Li CX, Ma RJ, et al. Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat Commun. 2022;13:4874.
    [12]
    Zhang YF, Fowler C, Liang JH, Azhar B, Shalaginov M, Deckoff-Jones S, et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat Nanotechnol. 2021;16:661–6.
    [13]
    Shalaginov M, An S, Zhang YF, Yang F, Su P, Liberman V, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat Commun. 2021;12:1225.
    [14]
    Abdollahramezani S, Hemmatyar O, Taghinejad M, Taghinejad H, Krasnok A, Eftekhar A, et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat Commun. 2022;13:1696.
    [15]
    Song YZ, Yuan JQ, Chen QM, Liu XY, Zhou Y, Cheng JL, et al. Three-dimensional varifocal meta-device for augmented reality display. PhotoniX. 2025;6:6.
    [16]
    Li Y, Chen SY, Liang HW, Ren XY, Luo LC, Ling YY, et al. Ultracompact multifunctional metalens visor for augmented reality displays. PhotoniX. 2022;3:29.
    [17]
    Yu J, Qin R, Ying Y, Qiu M, Li Q. Asymmetric directional control of thermal emission. Adv Mater. 2023;35:2302478.
    [18]
    Zhu HZ, Li Q, Tao CN, Hong Y, Xu ZQ, Shen WD, et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat Commun. 2021;12:1805.
    [19]
    Zhao M, Zhu HZ, Qin B, Zhu RX, Zhang JH, Ghosh P, et al. High-temperature stealth across multi-infrared and microwave bands with efficient radiative thermal management. Nano-Micro Lett. 2025;17:199.
    [20]
    Qin B, Zhu YN, Zhou YW, Qiu M, Li Q. Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light Sci Appl. 2023;12:246.
    [21]
    Malevich Y, Ergoktas MS, Bakan G, Steiner P, Kocabas C. Very-large-scale reconfigurable intelligent surfaces for dynamic control of terahertz and millimeter waves. Nat Commun. 2025;16:2907.
    [22]
    Jiang XP, Nong J, Li X, Liao XY, Zeng JX, Luo SS, et al. Laser-adaptive inverse-design metamaterials for durable regulation from visible-infrared-LiDAR compatible camouflage to optical limiter. Laser Photonics Rev. 2025:e00881. https://doi.org/10.1002/lpor.202500881.
    [23]
    Li XQ, Sun B, Sui CX, Nandi A, Fang HM, Peng YC, et al. Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings. Nat Commun. 2020;11:6101.
    [24]
    Jia Y, Liu DQ, Chen DS, Jin YZ, Ge YF, Zhang WX, et al. Realizing sunlight-induced efficiently dynamic infrared emissivity modulation based on aluminum-doped zinc oxide nanocrystals. Adv Sci. 2024;11:2405962.
    [25]
    Heßler A, Wahl S, Kristensen P, Wuttig M, Busch K, Taubner T. Nanostructured In3SbTe2 antennas enable switching from sharp dielectric to broad plasmonic resonances. Nanophotonics. 2022;11:3871–82.
    [26]
    Heßler A, Conrads L, Wirth K, Wuttig M, Taubner T. Reconfiguring magnetic infrared resonances with the plasmonic phase-change material In3SbTe2. ACS Photonics. 2022;9:1821–8.
    [27]
    Yang JL, Li QY, Liu SQ, Fang DB, Zhang JY, Jin HB, et al. Temperature-adaptive metasurface radiative cooling device with excellent emittance and low solar absorptance for dynamic thermal regulation. Adv Photon. 2024;6:046006.
    [28]
    Lyu X, Heßler A, Wang X, Cao YZ, Song LX, Ludwig A, et al. Combining switchable phase-change materials and phase-transition materials for thermally regulated smart mid-infrared modulators. Adv Opt Mater. 2021;9:2100417.
    [29]
    Tang K, Wang X, Dong K, Li Y, Li J, Sun B, et al. A thermal radiation modulation platform by emissivity engineering with graded metal-insulator transition. Adv Mater. 2020;32:1907071.
    [30]
    Leitis A, Heßler A, Wahl S, Wuttig M, Taubner T, Tittl A, et al. All-dielectric programmable Huygens’ metasurfaces. Adv Funct Mater. 2020;30:1910259.
    [31]
    Ríos C, Du QY, Zhang YF, Popescu CC, Shalaginov MY, Miller P, et al. Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials. PhotoniX. 2022;3:26.
    [32]
    Giteau M, Conrads L, Mathwieser A, Schmitt R, Wuttig M, Taubner T, et al. Switchable narrowband diffuse thermal emission with an In3SbTe2-based planar structure. Laser Photon Rev. 2025;19:2401438.
    [33]
    Zhou SH, Dong SK, Song JM, Guo YM, Shuai Y, Hu GW. Tri-spectral decoupled programmable thermal emitter for multimode camouflage with heterogeneous phase-change integration. Nanoscale. 2025;17:13708–19.
    [34]
    Conrads L, Honné N, Ulm A, Heßler A, Schmitt R, Wuttig M. Reconfigurable and polarization-dependent grating absorber for large-area emissivity control based on the plasmonic phase-change material In3SbTe2. Adv Opt Mater. 2023;11:2202696.
    [35]
    Xiong YF, Wang YZ, Feng C, Tian YL, Gao L, Wang JL, et al. Electrically tunable phase-change metasurface for dynamic infrared thermal camouflage. Photonics Res. 2024;12:292–300.
    [36]
    Qian C, Jia YT, Wang ZD, Chen JT, Lin PJ, Zhu XY, et al. Autonomous aeroamphibious invisibility cloak with stochastic-evolution learning. Adv Photon. 2024;6:016001.
    [37]
    Yu SL, Zhou P, Xi W, Chen ZH, Deng YH, Luo XB, et al. General deep learning framework for emissivity engineering. Light Sci Appl. 2023;12:1–13.
    [38]
    Mendialdua J, Casanova R, Barbaux Y. XPS studies of V2O5, V6O13, VO2 and V2O3. J Electron Spectrosc Relat Phenom. 1995;71:249–61.
    [39]
    Silversmit G, Depla D, Poelman H, Marin GB, De Gryse R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J Electron Spectrosc Relat Phenom. 2004;135:167–75.
    [40]
    Ko JH, Kim DH, Hong SH, Kim SK, Song YM. Polarization-driven thermal emission regulator based on self-aligned GST nanocolumns. iScience. 2023;26:105780.
    [41]
    Kang D, Kim Y, Lee M. Laser dynamic control of the thermal emissivity of a planar cavity structure based on a phase-change material. ACS Appl Mater Interfaces. 2024;16:4925–33.
    [42]
    Xu GQ, Kang QL, Zhang XZ, Wang W, Guo K, Guo ZY. Inverse-design laser-infrared-compatible stealth with thermal management enabled by wavelength-selective thermal emitter. Appl Therm Eng. 2024;255:124063.
    [43]
    Xu ZQ, Luo H, Zhu HZ, Hong Y, Shen WD, Ding JP, et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting. Nano Lett. 2021;21(12):5269–76.
    [44]
    Kim HJ, Choi YH, Lee DK, Lee IH, Choi BK, Phark SH, et al. Enhanced passive thermal stealth properties of VO2 thin films via gradient W doping. Appl Surf Sci. 2021;561:150056.
    [45]
    Ramirez-Cuevas FV, Gurunatha KL, Li LX, Zulfiqar U, Sathasivam S, Tiwari MK, et al. Infrared thermochromic antenna composite for self-adaptive thermoregulation. Nat Commun. 2024;15:9109.
    [46]
    Bai T, Luo JQ, Zhao J. Inconspicuous adversarial patches for fooling image-recognition systems on mobile devices. IEEE Internet Things J. 2022;9:9515–24.
    [47]
    Wei XX, Yu J, Huang Y. Infrared adversarial patches with learnable shapes and locations in the physical world. Int J Comput Vis. 2024;132:1928–44.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (12) PDF downloads(1) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return