Citation: | Minda Qiao, Yuhan Zhang, Haodong Yang, Linge Bai, Xue Dong, Tong Zhang, Jinpeng Liu, Fei Liu, Sylvain Gigan, Xiaopeng Shao. Harnessing forward scattering effect for high dynamic imaging[J]. PhotoniX. doi: 10.1186/s43074-025-00202-6 |
[1] |
Liu Y, Gao C, Li D, et al. Dynamic X-ray imaging with screen-printed perovskite CMOS array. Nat Commun. 2024;15(1):1588. https://doi.org/10.1038/s41467-024-45871-2.
|
[2] |
Du S, Dong Z, Li Y, Ikenaga T. Straight-line detection within 1 millisecond per frame for ultrahigh-speed industrial automation. IEEE Trans Ind Inform. 2023;19(4):5965–75. https://doi.org/10.1109/TII.2022.3170585.
|
[3] |
Long Z, Qiu X, Chan CLJ, et al. A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina. Nat Commun. 2023;14(1):1972. https://doi.org/10.1038/s41467-023-37581-y.
|
[4] |
Daly S, Ferreira Fernandes J, Bruggeman E, et al. High-density volumetric super-resolution microscopy. Nat Commun. 2024;15(1):1940. https://doi.org/10.1038/s41467-024-45828-5.
|
[5] |
Vinegoni C, Leon Swisher C, Fumene Feruglio P, et al. Real-time high dynamic range laser scanning microscopy. Nat Commun. 2016;7(1):11077. https://doi.org/10.1038/ncomms11077.
|
[6] |
Zhao W, Zhao S, Li L, et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat Biotechnol. 2022;40(4):606–17. https://doi.org/10.1038/s41587-021-01092-2.
|
[7] |
Guilbert J, Negash A, Labouesse S, Gigan S, Sentenac A, Aguiar HB de. Label-free super-resolution stimulated Raman scattering imaging of biomedical specimens. ai. 2024;1(1):011004. https://doi.org/10.3788/AI.2024.10004.
|
[8] |
Jin D, Chen Y, Lu Y, et al. Neutralizing the impact of atmospheric turbulence on complex scene imaging via deep learning. Nat Mach Intell. 2021;3(10):876–84. https://doi.org/10.1038/s42256-021-00392-1.
|
[9] |
Liu T, Quan Y, Su Y, et al. Astronomical image denoising by self-supervised deep learning and restoration processes. Nat Astron. 2025. https://doi.org/10.1038/s41550-025-02484-z.
|
[10] |
Ho Eom B, Day PK, LeDuc HG, Zmuidzinas J. A wideband, low-noise superconducting amplifier with high dynamic range. Nat Phys. 2012;8(8):623–7. https://doi.org/10.1038/nphys2356.
|
[11] |
Pierre A, Gaikwad A, Arias AC. Charge-integrating organic heterojunction phototransistors for wide-dynamic-range image sensors. Nat Photon. 2017;11(3):193–9. https://doi.org/10.1038/nphoton.2017.15.
|
[12] |
Jin W, Cao Y, Yang F, Ho HL. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat Commun. 2015;6(1):6767. https://doi.org/10.1038/ncomms7767.
|
[13] |
Daulay O, Liu G, Ye K, et al. Ultrahigh dynamic range and low noise figure programmable integrated microwave photonic filter. Nat Commun. 2022;13(1):7798. https://doi.org/10.1038/s41467-022-35485-x.
|
[14] |
Mertens T, Kautz J, Van Reeth F. Exposure fusion. In: 15th Pacific Conference on Computer Graphics and Applications (PG’07). IEEE. 2007:382–390. https://doi.org/10.1109/PG.2007.17.
|
[15] |
Mertens T, Kautz J, Van Reeth F. Exposure fusion: a simple and practical alternative to high dynamic range photography. Computer Graphics Forum. 2009;28(1):161–71. https://doi.org/10.1111/j.1467-8659.2008.01171.x.
|
[16] |
Kodgirwar S, Loetgering L, Liu C, et al. Bayesian multi-exposure image fusion for robust high dynamic range ptychography. Opt Express. 2024;32(16):28090–9. https://doi.org/10.1364/OE.524284.
|
[17] |
Shen X, Wang P, Zhu J, et al. Temporal contrast reduction techniques for high dynamic-range temporal contrast measurement. Opt Express. 2019;27(8):10586–601. https://doi.org/10.1364/OE.27.010586.
|
[18] |
Niu B, Qu X, Guan X, Zhang F. Fast HDR image generation method from a single snapshot image based on frequency division multiplexing technology. Opt Express. 2021;29(17):27562–72. https://doi.org/10.1364/OE.434950.
|
[19] |
Wang Q, Luo H, Li Z, Ding Y, Xiong W. High dynamic range spatial heterodyne one-dimensional imaging spectroscopy based on a digital micromirror device. Opt Express. 2024;32(13):22067–77. https://doi.org/10.1364/OE.520080.
|
[20] |
Guo S, Gallego G. CMax-SLAM: event-based rotational-motion bundle adjustment and SLAM system using contrast maximization. IEEE Trans Robot. 2024;40:2442–61. https://doi.org/10.1109/TRO.2024.3378443.
|
[21] |
Maqueda AI, Loquercio A, Gallego G, Garcia N, Scaramuzza D. Event-based vision meets deep learning on steering prediction for self-driving cars. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE. 2018:5419–5427. https://doi.org/10.1109/CVPR.2018.00568.
|
[22] |
Gallego G, Delbruck T, Orchard G, et al. Event-based vision: a survey. IEEE Trans Pattern Anal Mach Intell. 2022;44(1):154–80. https://doi.org/10.1109/TPAMI.2020.3008413.
|
[23] |
Yu Z, Li H, Zhong T, et al. Wavefront shaping: a versatile tool to conquer multiple scattering in multidisciplinary fields. Innov (Camb). 2022;3(5):100292. https://doi.org/10.1016/j.xinn.2022.100292.
|
[24] |
Cheng Z, Li C, Khadria A, Zhang Y, Wang LV. High-gain and high-speed wavefront shaping through scattering media. Nat Photon. 2023;17(4):299–305. https://doi.org/10.1038/s41566-022-01142-4.
|
[25] |
Liu J, Feng Y, Wang Y, et al. Future-proof imaging: computational imaging. Adv Imaging. 2024;1(1):012001. https://doi.org/10.3788/AI.2024.20003.
|
[26] |
Yu Z, Zhong T, Li H, et al. Long distance all-optical logic operations through a single multimode fiber empowered by wavefront shaping. Photon Res. 2024;12(3):587. https://doi.org/10.1364/PRJ.499523.
|
[27] |
Zhang X, Gao J, Gan Y, et al. Different channels to transmit information in scattering media. PhotoniX. 2023;4(1):10. https://doi.org/10.1186/s43074-023-00087-3.
|
[28] |
Sun J. Poisson matting. Published August 01, 2004. https://dl.acm.org/doi/abs/10.1145/1186562.1015721.
|
[29] |
Korotkova O. Design of weak scattering media for controllable light scattering. Opt Lett. 2015;40(2):284. https://doi.org/10.1364/OL.40.000284.
|
[30] |
Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010;7(8):603–14. https://doi.org/10.1038/nmeth.1483.
|
[31] |
Jauregui-Sánchez Y, Penketh H, Bertolotti J. Tracking moving objects through scattering media via speckle correlations. Nat Commun. 2022;13(1):5779. https://doi.org/10.1038/s41467-022-33470-y.
|
[32] |
Wang R, Wang G. Single image recovery in scattering medium by propagating deconvolution. Opt Express. 2014;22(7):8114–9. https://doi.org/10.1364/OE.22.008114.
|
[33] |
Guo E, Zhu S, Sun Y, Bai L, Zuo C, Han J. Learning-based method to reconstruct complex targets through scattering medium beyond the memory effect. Opt Express, OE. 2020;28(2):2433–46. https://doi.org/10.1364/OE.383911.
|
[34] |
Song Y, Li H, Zhai G, He Y, Bian S, Zhou W. Comparison of multichannel signal deconvolution algorithms in airborne LiDAR bathymetry based on wavelet transform. Sci Rep. 2021;11(1):16988. https://doi.org/10.1038/s41598-021-96551-w.
|
[35] |
Mukherjee S, Rosen J. Imaging through scattering medium by adaptive non-linear digital processing. Sci Rep. 2018;8(1):10517. https://doi.org/10.1038/s41598-018-28523-6.
|
[36] |
Rai MR, Vijayakumar A, Rosen J. Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH). Opt Express. 2018;26(14):18143. https://doi.org/10.1364/OE.26.018143.
|
[37] |
Rai MR, Vijayakumar A, Ogura Y, Rosen J. Resolution enhancement in nonlinear interferenceless COACH with point response of subdiffraction limit patterns. Opt Express. 2019;27(2):391. https://doi.org/10.1364/OE.27.000391.
|
[38] |
Anand V, Ng SH, Maksimovic J, et al. Single shot multispectral multidimensional imaging using chaotic waves. Sci Rep. 2020;10(1):13902. https://doi.org/10.1038/s41598-020-70849-7.
|
[39] |
Anand V, Ng SH, Katkus T, Juodkazis S. Spatio-spectral-temporal imaging of fast transient phenomena using a random array of pinholes. Adv Photonics Res. 2021;2(2):2000032. https://doi.org/10.1002/adpr.202000032.
|
[40] |
Feng S, Kane C, Lee PA, Stone AD. Correlations and fluctuations of coherent wave transmission through disordered media. Phys Rev Lett. 1988;61(7):834–7. https://doi.org/10.1103/PhysRevLett.61.834.
|
[41] |
Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media. Phys Rev Lett. 1988;61(20):2328–31. https://doi.org/10.1103/PhysRevLett.61.2328.
|
[42] |
Freund I, Berkovits R. Surface reflections and optical transport through random media: coherent backscattering, optical memory effect, frequency, and dynamical correlations. Phys Rev B. 1990;41(1):496–503. https://doi.org/10.1103/PhysRevB.41.496.
|
[43] |
Berkovits R, Kaveh M. Time-reversed memory effects. Phys Rev B. 1990;41(4):2635–8. https://doi.org/10.1103/PhysRevB.41.2635.
|
[44] |
Judkewitz B, Horstmeyer R, Vellekoop IM, Papadopoulos IN, Yang C. Translation correlations in anisotropically scattering media. Nature Phys. 2015;11(8):684–9. https://doi.org/10.1038/nphys3373.
|
[45] |
Yao J, Zhao Y, Bu Y, Kong SG, Chan JCW. Laplacian pyramid fusion network with hierarchical guidance for infrared and visible image fusion. IEEE Trans Circuits Syst Video Technol. 2023;33(9):4630–44. https://doi.org/10.1109/TCSVT.2023.3245607.
|
[46] |
Luo X, Fu G, Yang J, Cao Y, Cao Y. Multi-modal image fusion via deep Laplacian pyramid hybrid network. IEEE Trans Circuits Syst Video Technol. 2023;33(12):7354–69. https://doi.org/10.1109/TCSVT.2023.3281462.
|
[47] |
Wang D, Sahoo SK, Zhu X, Adamo G, Dang C. Non-invasive super-resolution imaging through dynamic scattering media. Nat Commun. 2021;12(1):3150. https://doi.org/10.1038/s41467-021-23421-4.
|
[48] |
Zhang T, Wang X, Zhao W, Zhai A, Dang C, Wang D. Noninvasive imaging through scattering media with enlarged FOV using PSF estimations and correlations. Adv Photonics Res. 2023;4(6):2300100. https://doi.org/10.1002/adpr.202300100.
|
[49] |
Sun S, Gu JH, Lin HZ, Jiang L, Liu WT. Gradual ghost imaging of moving objects by tracking based on cross correlation. Opt Lett. 2019;44(22):5594–7. https://doi.org/10.1364/OL.44.005594.
|
[50] |
Li L, Li Q, Sun S, Lin HZ, Liu WT, Chen PX. Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function. Opt Lett. 2018;43(8):1670–3. https://doi.org/10.1364/OL.43.001670.
|
[51] |
Cua M, Zhou E, Haojiang, Yang C. Imaging moving targets through scattering media. Opt Express. 2017;25(4):3935. https://doi.org/10.1364/OE.25.003935.
|
[52] |
Sahoo SK, Tang D, Dang C. Single-shot multispectral imaging with a monochromatic camera. Optica. 2017;4(10):1209. https://doi.org/10.1364/OPTICA.4.001209.
|
[53] |
Liu J, Yang W, Song G, Gan Q. Directly and instantly seeing through random diffusers by self-imaging in scattering speckles. PhotoniX. 2023;4(1):1. https://doi.org/10.1186/s43074-022-00080-2.
|
[54] |
Yang H, Yuan Z, Wang H, Cheng L. An end-to-end network for multiple scattering media imaging. In: Lu Y, Cheng C, eds. Third International Conference on Computer Science and Communication Technology (ICCSCT 2022). SPIE. 2022:162. https://doi.org/10.1117/12.2662207.
|
[55] |
Yang B, Tan L, Zhang X, et al. Learning-based polarization retrieval from intensity speckle of dense scattering media. Opt Express. 2025;33(5):9446. https://doi.org/10.1364/OE.555500.
|
[56] |
Guo E, Sun Y, Zhu S, et al. Single-shot color object reconstruction through scattering medium based on neural network. Opt Lasers Eng. 2021;136:106310. https://doi.org/10.1016/j.optlaseng.2020.106310.
|
[57] |
Li H, Yu Z, Zhao Q, et al. Learning-based super-resolution interpolation for sub-Nyquist sampled laser speckles. Photon Res. 2023;11(4):631. https://doi.org/10.1364/PRJ.472512.
|