Turn off MathJax
Article Contents
M. Surýnek, A. Farkaš, J. Zubáč, P. Kubaščík, K. Olejník, F. Krizek, L. Nádvorník, T. Ostatnický, R. P. Campion, V. Novák, T. Jungwirth, P. Němec. Sub-nanosecond heat-based logic, writing and reset in an antiferromagnetic magnetoresistive memory[J]. PhotoniX. doi: 10.1186/s43074-025-00207-1
Citation: M. Surýnek, A. Farkaš, J. Zubáč, P. Kubaščík, K. Olejník, F. Krizek, L. Nádvorník, T. Ostatnický, R. P. Campion, V. Novák, T. Jungwirth, P. Němec. Sub-nanosecond heat-based logic, writing and reset in an antiferromagnetic magnetoresistive memory[J]. PhotoniX. doi: 10.1186/s43074-025-00207-1

Sub-nanosecond heat-based logic, writing and reset in an antiferromagnetic magnetoresistive memory

doi: 10.1186/s43074-025-00207-1
Funds:  This work was supported by TERAFIT project No. CZ.02.01.01/00/22_008/0004594 funded by Ministry of Education Youth and Sports of the Czech Republic (MEYS CR), programme Johannes Amos Comenius (OP JAK), call Excellent Research. The authors acknowledge funding by the Czech Science Foundation (grant no. 21–28876J), by ERC Advanced Grant no. 101095925, by the Grant Agency of the Charles University (grants no. 166123 and SVV–2024–260720), by CzechNanoLab Research Infrastructure supported by MEYS CR (LM2023051), and by MEYS CR project LNSM-LNSpin.
  • Received Date: 2025-07-24
  • Accepted Date: 2025-10-22
  • Rev Recd Date: 2025-10-15
  • Available Online: 2025-11-04
  • Thermal logic aims to create thermal counterparts to electronic circuits. In this work, we investigate experimentally the response of an analog memory device based on a thin film of an antiferromagnetic metal CuMnAs to bursts of heat pulses generated by the absorption of femtosecond laser pulses at room ambient temperature. When a threshold temperature in the heat-based short-term memory of the device is exceeded, the output of the in-memory logic operations is transferred within the same device to a long-term memory, where it can be retrieved at macroscopic times. The long-term memory is based on magnetoresistive switching from a reference low-resistive uniform magnetic state to high-resistive metastable nanofragmented magnetic states. The in-memory heat-based logic operations and the conversion of the outputs into the electrically-readable long-term magnetoresistive memory were performed at sub-nanosecond time scales, making them compatible with the GHz frequencies of standard electronics. Finally, we demonstrate the possibility of rapidly resetting the long-term memory to the reference low-resistive state by heat pulses.
  • loading
  • [1]
    Fert A. Nobel lecture: origin, development, and future of spintronics. Rev Mod Phys. 2008;80:1517–30.
    [2]
    Dery H, Dalal P, Cywiński Ł, Sham LJ. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature. 2007;447:573–6.
    [3]
    Chappert C, Fert A, Van Dau FN. The emergence of spin electronics in data storage. Nat Mater. 2007;6:813–23.
    [4]
    Mead C. Neuromorphic electronic systems. Proc IEEE. 1990;78:1629–36.
    [5]
    Burr GW, et al. Neuromorphic computing using non-volatile memory. Adv Physics X. 2017;2:89–124.
    [6]
    Grollier J, et al. Neuromorphic spintronics. Nat Electron. 2020;3:360–70.
    [7]
    Landauer R. Irreversibility and heat generation in the computing process. IBM J Res Dev. 1961;5:183–91.
    [8]
    Chen X, Ye H, Fan X, Ren T, Zhang G. A review of small heat pipes for electronics. Appl Therm Eng. 2016;96:1–17.
    [9]
    Bahiraei M, Heshmatian S. Electronics cooling with nanofluids: a critical review. Energy Convers Manag. 2018;172:438–56.
    [10]
    Yu ZQ, Li MT, Cao BY. A comprehensive review on microchannel heat sinks for electronics cooling. Int J Extrem Manuf. 2024;6:022005.
    [11]
    Waldrop MM. The chips are down for Moore’s law. Nature. 2016;530:144–7.
    [12]
    Kryder MH, et al. Heat assisted magnetic recording. Proc IEEE. 2008;96:1810–35.
    [13]
    Paolucci F, Marchegiani G, Strambini E, Giazotto F. Phase-tunable thermal logic: computation with heat. Phys Rev Appl. 2018;10:024003.
    [14]
    Poulsen K, Zinner NT. Heat-based circuits using quantum rectification. Phys Rev A. 2024;109:052223.
    [15]
    Nataf GF, et al. Using oxides to compute with heat. Nat Rev Mater. 2024;9:530–1.
    [16]
    Wang L, Li B. Thermal logic gates: computation with phonons. Phys Rev Lett. 2007;99:177208.
    [17]
    Kathmann C, Reina M, Messina R, Ben-Abdallah P, Biehs S-A. Scalable radiative thermal logic gates based on nanoparticle networks. Sci Rep. 2020;10:3596.
    [18]
    Chang CW, Okawa D, Majumdar A, Zettl A. Solid-state thermal rectifier. Science. 2006;314:1121–4.
    [19]
    Martínez-Pérez MJ, Fornieri A, Giazotto F. Rectification of electronic heat current by a hybrid thermal diode. Nat Nanotechnol. 2015;10:303–7.
    [20]
    Zhu Q, Zdrojewski K, Castelli L, Wehmeyer G. Oscillating gadolinium thermal diode using temperature-dependent magnetic forces. Adv Funct Mater. 2022;32:2206733.
    [21]
    Ligato N, Paolucci F, Strambini E, Giazotto F. Thermal superconducting quantum interference proximity transistor. Nat Phys. 2022;18:627–32.
    [22]
    Castelli L, Zhu Q, Shimokusu TJ, Wehmeyer G. A three-terminal magnetic thermal transistor. Nat Commun. 2023;14:393.
    [23]
    Lim JW, et al. A nanoscale photonic thermal transistor for sub-second heat flow switching. Nat Commun. 2024;15:5584.
    [24]
    Wang L, Li B. Thermal memory: a storage of phononic information. Phys Rev Lett. 2008;101:267203.
    [25]
    Xie R, et al. An electrically tuned solid-state thermal memory based on metal–insulator transition of single-crystalline VO2 nanobeams. Adv Funct Mater. 2011;21:1602–7.
    [26]
    Fornieri A, Timossi G, Bosisio R, Solinas P, Giazotto F. Negative differential thermal conductance and heat amplification in superconducting hybrid devices. Phys Rev B. 2016;93:134508.
    [27]
    Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics. Nat Nanotechnol. 2016;11:231–41.
    [28]
    Baltz V, et al. Antiferromagnetic spintronics. Rev Mod Phys. 2018;90:015005.
    [29]
    Němec P, Fiebig M, Kampfrath T, Kimel AV. Antiferromagnetic optospintronics. Nat Phys. 2018;14:229–41.
    [30]
    Bossini D, et al. Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons. Nat Commun. 2016;7:10645.
    [31]
    Olejník K, et al. Terahertz electrical writing speed in an antiferromagnetic memory. Sci Adv. 2018;4:eaa3566.
    [32]
    Gomonay O, Baltz V, Brataas A, Tserkovnyak Y. Antiferromagnetic spin textures and dynamics. Nat Phys. 2018;14:213–6.
    [33]
    Fukami S, Zhang C, Duttagupta S, Kurenkov A, Ohno H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat Mater. 2016;15:535–41.
    [34]
    Olejník K, et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat Commun. 2017;8:15434.
    [35]
    Kašpar Z, et al. Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses. Nat Electron. 2021;4:30–7.
    [36]
    Kurenkov A, Fukami S, Ohno H. Neuromorphic computing with antiferromagnetic spintronics. J Appl Phys. 2020;128:010902.
    [37]
    Bindal N, Ian CAC, Lew WS, Kaushik BK. Antiferromagnetic skyrmion repulsion based artificial neuron device. Nanotechnology. 2021;32:215204.
    [38]
    Bradley H, et al. Artificial neurons based on antiferromagnetic auto-oscillators as a platform for neuromorphic computing. AIP Adv. 2023;13:015206.
    [39]
    Wadley P, et al. Electrical switching of an antiferromagnet. Science. 2016;351:587–90.
    [40]
    Wadley P, et al. Current polarity-dependent manipulation of antiferromagnetic domains. Nat Nanotechnol. 2018;13:362–5.
    [41]
    Olejník K, et al. Quench switching of Mn2As. Phys Rev B. 2025;112:144401.
    [42]
    Surýnek M, et al. Picosecond transfer from short-term to long-term memory in analog antiferromagnetic memory device. Newton. 2025;1:100034.
    [43]
    Wong HSP, Salahuddin S. Memory leads the way to better computing. Nat Nanotechnol. 2015;10:191–4.
    [44]
    Sebastian A, Le Gallo M, Khaddam-Aljameh R, Eleftheriou E. Memory devices and applications for in-memory computing. Nat Nanotechnol. 2020;15:529–44.
    [45]
    Lian C, et al. Photonic (computational) memories: tunable nanophotonics for data storage and computing. Nanophotonics. 2022;11:3823–54.
    [46]
    Zubáč J, et al. Investigation of opto-magnetic memory effects in antiferromagnetic CuMnAs using ultrafast heat dynamics and quench switching. Adv Electron Mater. 2025;11:2400835.
    [47]
    Ohno T, et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater. 2011;10:591–5.
    [48]
    Chang T, Jo SH, Lu W. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano. 2011;5:7669–76.
    [49]
    Ji X, et al. Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor. Nat Commun. 2021;12:2480.
    [50]
    Fuster JM, Alexander GE. Neuron activity related to short-term memory. Science. 1971;173:652–4.
    [51]
    Abbott LF, Regehr WG. Synaptic computation. Nature. 2004;431:796–803.
    [52]
    Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol. 2002;64:355–405.
    [53]
    Grande LA, Spain WJ. Synaptic depression as a timing device. Physiology. 2005;20:201–10.
    [54]
    Regehr WG. Short-term presynaptic plasticity. Cold Spring Harb Perspect Biol. 2012;4:a005702.
    [55]
    Shiffrin RM, Atkinson RC. Storage and retrieval processes in long-term memory. Psychol Rev. 1969;76:179–93.
    [56]
    Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–9.
    [57]
    Bi G, Poo M. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci. 2001;24:139–66.
    [58]
    Li C, et al. Short-term synaptic plasticity in emerging devices for neuromorphic computing. iScience. 2023;26:106315.
    [59]
    Hennig MH. Theoretical models of synaptic short term plasticity. Front Comput Neurosci. 2013;7:45.
    [60]
    Atkinson RC, Shiffrin RM. Human memory: a proposed system and its control processes. In: Spence KW, Spence JT, editors. The psychology of learning and motivation: advances in research and theory vol. 2. Academic Press; 1968. p. 89–195. https://escholarship.org/uc/item/5kd4s4j3.
    [61]
    Křížek F, et al. Molecular beam epitaxy of CuMnAs. Phys Rev Mater. 2020;4:014409.
    [62]
    Surýnek M, et al. Investigation of magnetic anisotropy and heat dissipation in thin films of compensated antiferromagnet CuMnAs by pump–probe experiment. J Appl Phys. 2020;127:233904.
    [63]
    Kirilyuk A, Kimel AV, Rasing Th. Ultrafast optical manipulation of magnetic order. Rev Mod Phys. 2010;82:2731–84.
    [64]
    Stanciu CD. All-optical magnetic recording with circularly polarized light. Phys Rev Lett. 2007;99:047601.
    [65]
    Ostler TA, et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat Commun. 2012;3:666.
    [66]
    Lambert CH, et al. All-optical control of ferromagnetic thin films and nanostructures. Science. 2014;345:1337–40.
    [67]
    Kimel AV, Li M. Writing magnetic memory with ultrashort light pulses. Nat Rev Mat. 2019;4:189–200.
    [68]
    Igarashi J, Zhang W, Remy Q, et al. Optically induced ultrafast magnetization switching in ferromagnetic spin valves. Nat Mater. 2023;22:725–30.
    [69]
    Scheid P, Remy Q, Lebègue S, Malinowski G, Mangin S. Light induced ultrafast magnetization dynamics in metallic compounds. J Mag Mag Mater. 2022;560:169596.
    [70]
    Hao D, Liu D, Zhang J, Wang Y, Huang J. Lead-free perovskites-based photonic synaptic devices with logic functions. Adv Mater Technol. 2021;6:2100678.
    [71]
    He N, et al. Multifunctional Ag–In–Zn–S/Cs3Cu2Cl5-based memristors with coexistence of non-volatile memory and volatile threshold switching behaviors for neuroinspired computing. Adv Electron Mater. 2023;9:2201038.
    [72]
    Dong L, et al. Artificial optoelectronic synapse based on violet phosphorus microfiber arrays. Small. 2023;20:2306998.
    [73]
    Wang J, et al. Technology and integration roadmap for optoelectronic memristor. Adv Mater. 2024;36:2307393.
    [74]
    Grzybowski MJ, et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys Rev Lett. 2017;118:057701.
    [75]
    Křížek F, et al. Atomically sharp domain walls in an antiferromagnet. Sci Adv. 2022;8:eabn3535.
    [76]
    Ho A, Erdil E, Besiroglu T. Limits to the energy efficiency of CMOS microprocessors. 2023. Preprint at https://arxiv.org/pdf/2312.08595.
    [77]
    van de Burgt Y, et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat Mater. 2017;16:414–8.
    [78]
    Zhu L, Zhu L, Shi S, Ralph DC, Buhrman RA. Energy-efficient ultrafast SOT-MRAMs based on low-resistivity spin hall metal Au0.25Pt0.75. Adv Electron Mater. 2020;6:1901131.
    [79]
    Novotny L, Pohl DW, Hecht B. Scanning near-field optical probe with ultrasmall spot size. Opt Lett. 1995;20:970–2.
    [80]
    Chen X, et al. Neuromorphic photonic memory devices using ultrafast, non-volatile phase-change materials. Adv Mater. 2023;35:2203909.
    [81]
    Surýnek M, Nádvorník L, Schmoranzerová E, Němec P. Quasi-nondegenerate pump–probe magnetooptical experiment in GaAs/AlGaAs heterostructure based on spectral filtration. New J Phys. 2020;22:093065.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (8) PDF downloads(0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return