留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multifocal displays: review and prospect

Tao Zhan Jianghao Xiong Junyu Zou Shin-Tson Wu

Tao Zhan, Jianghao Xiong, Junyu Zou, Shin-Tson Wu. Multifocal displays: review and prospect[J]. PhotoniX. doi: 10.1186/s43074-020-00010-0
引用本文: Tao Zhan, Jianghao Xiong, Junyu Zou, Shin-Tson Wu. Multifocal displays: review and prospect[J]. PhotoniX. doi: 10.1186/s43074-020-00010-0
Tao Zhan, Jianghao Xiong, Junyu Zou, Shin-Tson Wu. Multifocal displays: review and prospect[J]. PhotoniX. doi: 10.1186/s43074-020-00010-0
Citation: Tao Zhan, Jianghao Xiong, Junyu Zou, Shin-Tson Wu. Multifocal displays: review and prospect[J]. PhotoniX. doi: 10.1186/s43074-020-00010-0

Multifocal displays: review and prospect

doi: 10.1186/s43074-020-00010-0

Multifocal displays: review and prospect

Funds: The authors thank Dr. Yun-Han Lee for helpful discussions and Intel Corporation for financial support.
  • 摘要: Conventional stereoscopic three-dimensional displays suffer from vergenceaccommodation conflict because the stimulus to accommodation is fixed by the display panel and viewing optics, but that to vergence changes with image contents. With the recent rapid development of head-mounted displays, several methods have been proposed to offer the accommodation cues, among which multifocal display technology is an effective and practical solution. The first two decades of this century has witnessed the fast growth of multifocal displays from basic concept to mature implementations. This review systematically presents the state-of-the-art multifocal display design and development. Firstly, a comprehensive classification of numerous potential optical architectures to provide the multiplanar functionality is introduced, based on how the information is multiplexed and how the focal planes are generated. Next, the strengths and obstacles of reported or potential designs in each category are analyzed and compared with each other. In addition to enabling optics, the image rendering approaches for the multifocal planes are also described. This review presents a sufficient collection of past designs and is expected to offer a roadmap for future research and development of multifocal displays.
      关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Javidi B, Okano F. Three-dimensional television, video, and display technologies. Belgium: Springer Science & Business Media; 2002.
    [2] Hong J, Kim Y, Choi HJ, Hahn J, Park JH, Kim H, Min SJ, Chen N, Lee B. Three-dimensional display technologies of recent interest: principles, status, and issues [invited]. Appl Opt. 2011;50:H87–H115.
    [3] Geng J. Three-dimensional display technologies. Adv Opt Photon. 2013;5:456–535.
    [4] Cakmakci O, Rolland J. Head-worn displays: a review. J Disp Technol. 2006;2:199–216.
    [5] Steuer J. Defining virtual reality: dimensions determining telepresence. J Commun. 1992;2:73–93.
    [6] Azuma RT. A survey of augmented reality. Presence: Teleoperators & Virtual Environments. 1997;6:355–85.
    [7] Reichelt S, Häussler R, Fütterer G, Leister N. Depth cues in human visual perception and their realization in 3D displays. In: Proc SPIE. 2010;7690:76900B.
    [8] Wann JP, Rushton S, Mon-Williams M. Natural problems for stereoscopic depth perception in virtual environments. Vis Res. 1995;35:2731–6.
    [9] Marran L, Schor C. Multiaccommodative stimuli in VR systems: problems & solutions. Hum Factors. 1997;39:382–8.
    [10] Bharadwaj SR, Candy TR. Accommodative and vergence responses to conflicting blur and disparity stimuli during development. J Vision. 2009;9:4–4.
    [11] Hoffman DM, Girshick AR, Akeley K, Banks MS. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J Vision. 2008;8:33.
    [12] Lambooij M, Fortuin M, Heynderickx I, IJsselsteijn W. Visual discomfort and visual fatigue of stereoscopic displays: a review. Journal of Imaging Science and Technology. 2009;53:30201.
    [13] Kramida G. Resolving the vergence-accommodation conflict in head-mounted displays. IEEE Trans Vis Comput Graph. 2015;22:1912–31.
    [14] Downing E, Hesselink L, Ralston J, Macfarlane R. A three-color, solid-state, three-dimensional display. Science. 1996;273:1185–9.
    [15] Favalora GE, Napoli J, Hall DM, Dorval RK, Giovinco MG, Richmond MJ, Chun WS. 100-million-voxel volumetric display. Proc SPIE. 2002;4712:300–12.
    [16] Blundell BG, Schwarz AJ. The classification of volumetric display systems: characteristics and predictability of the image space. IEEE Trans Vis Comput Graph. 2002;8:66–75.
    [17] Smalley DE, Nygaard E, Squire K, Van Wagoner J, Rasmussen J, Gneiting S, Qaderi K, Goodsell J, Rogers W, Lindsey M, Costner K, Monk A, Pearson M, Haymore B, Peatross J. A photophoretic-trap volumetric display. Nature. 2018;553:486.
    [18] Gabor D. A new microscopic principle. Nature. 1948;161:777–8.
    [19] Benton SA. Survey of holographic stereograms. Proc SPIE. 1983;367:15–9.
    [20] Tay S, Blanche PA, Voorakaranam R, Tunç AV, Lin W, Rokutanda S, Gu T, Flores D, Wang P, Li G, St Hilaire P, Thomas J, Norwood RA, Yamamoto M, Peyghambarian N. An updatable holographic three-dimensional display. Nature. 2008;451:694.
    [21] Yaraş F, Kang H, Onural L. State of the art in holographic displays: a survey. J Disp Technol. 2010;6:443–54.
    [22] Westheimer G. The Maxwellian view. Vis Res. 1966;6:669–82.
    [23] Ando T, Yamasaki K, Okamoto M, Shimizu E. Proc SPIE. 1998;3293:183–9.
    [24] Yuuki A, Itoga K, Satake T. A new Maxwellian view display for trouble-free accommodation. J Soc Inf Disp. 2012;20:581–8.
    [25] Jeong J, Lee J, Yoo C, Moon S, Lee B, Lee B. Holographically customized optical combiner for eye-box extended near-eye display. Opt Express. 2019;27:38006–18.
    [26] Stevens RE, Rhodes DP, Hasnain A, Laffont PY. Varifocal technologies providing prescription and VAC mitigation in HMDs using Alvarez lenses. In Proc SPIE. 2018;10676:106760J.
    [27] Dunn D, Tippets C, Torell K, Kellnhofer P, Akşit K, Didyk P, Myszkowski K, Luebke D, Fuchs H. Wide field of view varifocal near-eye display using see-through deformable membrane mirrors. IEEE Trans Vis Comput Graph. 2017;23:1322–31.
    [28] Padmanaban N, Konrad R, Stramer T, Cooper EA, Wetzstein G. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays. Proc Natl Acad Sci. 2017;114:2183–8.
    [29] Hua H, Gao C. A compact eyetracked optical see-through head-mounted display. In: Proc SPIE. 2012;8288:82881F.
    [30] Rolland JP, Krueger MW, Goon A. Multifocal planes head-mounted displays. Appl Opt. 2000;39:3209–15.
    [31] Saleh BE, Teich MC. Fundamentals of photonics. Hoboken: John Wiley & Sons; 2019.
    [32] Cheng D, Wang Q, Wang Y, Jin G. Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms. Chin Opt Lett. 2013;11:031201.
    [33] Xiong J, Tan G, Zhan T, Lee YH, Wu ST. Four-plane near-eye display without sacrificing the frame rate. SID Symposium Digest of Technical Papers. 2019;50:620–3.
    [34] Winzer PJ (2009) Modulation and multiplexing in optical communications. In: conference on lasers and electro-optics/international quantum electronics conference, OSA technical digest, paper CTuL3.
    [35] Igarashi Y, Yamamoto T, Tanaka Y, Someya J, Nakakura Y, Yamakawa M, Nishida Y, Kurita T. Summary of moving picture response time (MPRT) and futures. SID Symposium Digest of Technical Papers. 2004;35:1262–5.
    [36] Peng F, Chen H, Gou F, Lee YH, Wand M, Li MC, Lee SL, Wu ST. Analytical equation for the motion picture response time of display devices. J Appl Phys. 2017;121:023108.
    [37] Zhan T, Zou J, Lu M, Chen E, Wu ST. Wavelength-multiplexed multi-focal-plane seethrough near-eye displays. Opt Express. 2019;27:27507–13.
    [38] Liu YT, Liao KY, Lin CL, Li YL. Invited paper: pixeLED display for transparent applications. SID Symposium Digest of Technical Papers. 2018;49:874–5.
    [39] Lin CH, Lo WB, Liu KH, Liu CY, Lu JK, Sugiura N. Late-news poster: novel transparent LCD with tunable transparency. SID Symposium Digest of Technical Papers. 2012;43:1159–62.
    [40] Tsai YH, Huang MH, Huang TW, Lo KL, Ou-Yang M. Image quality affected by diffraction of aperture structure arrangement in transparent active-matrix organic light-emitting diode displays. Appl Opt. 2015;54:E136–45.
    [41] Saveljev VV, Son JY, Javidi B, Kim SK, Kim DS. Moiré minimization condition in three-dimensional image displays. J Disp Technol. 2005;1:347–53.
    [42] Lee C, DiVerdi S, Hollerer T. Depth-fused 3D imagery on an immaterial display. IEEE Trans Vis Comput Graph. 2008;15:20–33.
    [43] DiVerdi S, Rakkolainen I, Höllerer T, Olwal A. A novel walk-through 3D display. Proc SPIE. 2002;6005:605519.
    [44] Barnum PC, Narasimhan SG, Kanade T. A multi-layered display with water drops. In: ACM Transactions on Graphics. 2010;29:76.
    [45] Rakkolainen I, Palovuori K (2013) A fluorescent mid-air screen. In: 2013 IEEE international symposium on multimedia 25-29.
    [46] Lee S, Jang C, Moon S, Cho J, Lee B. Additive light field displays: realization of augmented reality with holographic optical elements. In: ACM Transactions on Graphics. 2016;35:60.
    [47] Akeley K, Watt SJ, Girshick AR, Banks MS. A stereo display prototype with multiple focal distances. ACM Trans Graph. 2004;23:804–13.
    [48] Suyama S, Ohtsuka S, Takada H, Uehira K, Sakai S. Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths. Vis Res. 2004;44:785–93.
    [49] Kim D, Lee S, Moon S, Cho J, Jo Y, Lee B. Hybrid multi-layer displays providing accommodation cues. Opt Express. 2018;26:17170–84.
    [50] Kim SK, Kwon YW, Yoon KH. AR optics using two depths. In: Proc SPIE. 2019;10997:109970A.
    [51] Başak UY, Kazempourradi S, Yilmaz C, Ulusoy E, Urey H. Dual focal plane augmented reality interactive display with gaze-tracker. OSA Continuum. 2019;2:1734–45.
    [52] Kress BC. Optical waveguide combiners for AR headsets: features and limitations. In: Proc SPIE. 2019;11062:110620J.
    [53] Cui W, Gao L. Optical mapping near-eye three-dimensional display with correct focus cues. Opt Lett. 2017;42:2475–8.
    [54] Cui W, Gao L. All-passive transformable optical mapping near-eye display. Sci Rep. 2019;9:6064.
    [55] Matsuda N, Fix A, Lanman D. Focal surface displays. ACM Trans Graph. 2017;36:86.
    [56] Shiwa S, Omura K, Kishino F. Proposal for a 3-D display with accommodative compensation: 3DDAC. J Soc Inf Disp. 1996;4:255–61.
    [57] Sugihara T, Miyasato T (1998) System development of fatigue-less HMD system 3DDAC (3D display with accommodative compensation: system implementation of Mk. 4 in light-weight HMD. In: ITE Technical Report 22.1: 33–36.
    [58] Akşit K, Lopes W, Kim J, Shirley P, Luebke D. Near-eye varifocal augmented reality display using see-through screens. ACM Trans Graph. 2017;36:189.
    [59] Shibata T, Kawai T, Ohta K, Otsuki M, Miyake N, Yoshihara Y, Iwasaki T. Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence. J Soc Inf Disp. 2005;13:665–71.
    [60] Voxon Photonics. https://voxon.co/. Accessed Jan 2, 2020.
    [61] Sullivan A. DepthCube solid-state 3D volumetric display. Proc SPIE. 2004;5291:279–84.
    [62] Yang DK, Chien LC, Doane JW. Cholesteric liquid crystal/polymer dispersion for haze-free light shutters. Appl Phys Lett. 1992;60:3102–4.
    [63] Zabels R, Osmanis K, Narels M, Smukulis R, Osmanis I. Integrated head-mounted display system based on a multi-planar architecture. In: Proc SPIE. 2019;10942:1094208.
    [64] Liu S, Li Y, Zhou P, Li X, Rong N, Huang S, Lu W, Su Y. A multi-plane optical see-through head mounted display design for augmented reality applications. J Soc Inf Disp. 2016;24:246–51.
    [65] Liu S, Li Y, Zhou P, Chen Q, Su Y. Reverse-mode PSLC multi-plane optical see-through display for AR applications. Opt Express. 2018;26:3394–403.
    [66] Liu S, Li Y, Zhou P, Chen Q, Li S, Liu Y, Wang Y, Su Y. Full-color multi-plane optical see-through head-mounted display for augmented reality applications. J Soc Inf Disp. 2018;26:687–93.
    [67] Rajaram CV, Hudson SD, Chien LC. Morphology of polymer-stabilized liquid crystals. Chem Mater. 1995;7:2300–8.
    [68] Lee YH, Peng F, Wu ST. Fast-response switchable lens for 3D and wearable displays. Opt Express. 2016;24:1668–75.
    [69] Lee CK, Moon S, Lee S, Yoo D, Hong JY, Lee B. Compact three-dimensional head-mounted display system with Savart plate. Opt Express. 2016;24:19531–44.
    [70] Moon S, Lee CK, Lee D, Jang C, Lee B. Layered display with accommodation cue using scattering polarizers. IEEE Journal of Selected Topics in Signal Processing. 2017;11:1223–31.
    [71] Chen Q, Peng Z, Li Y, Liu S, Zhou P, Gu J, Lu J, Yao L, Wang M, Su Y. Multi-plane augmented reality display based on cholesteric liquid crystal reflective films. Opt Express. 2019;27:12039–47.
    [72] Love GD, Hoffman DM, Hands PJ, Gao J, Kirby AK, Banks MS. High-speed switchable lens enables the development of a volumetric stereoscopic display. Opt Express. 2009;17:15716–25.
    [73] Chen HS, Wang YJ, Chen PJ, Lin YH. Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens. Opt Express. 2015;23:28154–62.
    [74] Jamali A, Yousefzadeh C, McGinty C, Bryant D, Bos PJ. LC lens systems to solve accommodation/convergence conflict in three-dimensional and virtual reality displays. Opt Eng. 2018;57:105101.
    [75] Jamali A, Bryant D, Zhang Y, Grunnet-Jepsen A, Bhowmik A, Bos PJ. Design of a large aperture tunable refractive Fresnel liquid crystal lens. Appl Opt. 2018;57:B10–9.
    [76] Wang YJ, Lin YH. An optical system for augmented reality with electrically tunable optical zoom function and image registration exploiting liquid crystal lenses. Opt Express. 2019;27:21163–72.
    [77] Gao K, Cheng HH, Bhowmik AK, Bos PJ. Thin-film Pancharatnam lens with low f-number and high quality. Opt Express. 2015;23:26086–94.
    [78] Tabiryan NV, Serak SV, Nersisyan SR, Roberts DE, Zeldovich BY, Steeves DM, Kimball BR. Broadband waveplate lenses. Opt Express. 2016;24:7091–102.
    [79] Zhan T, Zou J, Xiong J, Liu X, Chen H, Yang J, Liu S, Dong Y, Wu ST. Practical chromatic aberration correction in virtual reality displays enabled by cost-effective ultra-broadband liquid crystal polymer lenses. Advanced Optical Materials. 2020;8:1901360.
    [80] Zhan T, Lee YH, Xiong J, Tan G, Yin K, Yang J, Liu S, Wu ST. High-efficiency switchable optical elements for advanced head-up displays. J Soc Inf Disp. 2019;27:223–31.
    [81] Kobashi J, Yoshida H, Ozaki M. Planar optics with patterned chiral liquid crystals. Nat Photonics. 2016;10:389.
    [82] Lee YH, Tan G, Zhan T, Weng Y, Liu G, Gou F, Peng F, Tabiryan NV, Gauza S, Wu ST. Recent progress in Pancharatnam–berry phase optical elements and the applications for virtual/augmented realities. Optical Data Processing and Storage. 2017;3:79–88.
    [83] Yoo C, Bang K, Jang C, Kim D, Lee CK, Sung G, Lee HS, Lee B. Dual-focal waveguide see-through near-eye display with polarization-dependent lenses. Opt Lett. 2019;44:1920–3.
    [84] Yousefzadeh C, Jamali A, McGinty C, Bos PJ. “Achromatic limits” of Pancharatnam phase lenses. Appl Opt. 2018;57:1151–8.
    [85] Huang Y, Zhou Y, Wu ST. Broadband circular polarizer using stacked chiral polymer films. Opt Express. 2007;15:6414–9.
    [86] Suyama S, Date M, Takada H. Three-dimensional display system with dual-frequency liquid-crystal varifocal lens. Jpn J Appl Phys. 2000;39:480.
    [87] Liu S, Cheng D, Hua H (2008) An optical see-through head mounted display with addressable focal planes. (2008) in: 7th IEEE/ACM international symposium on mixed and augmented reality 33-42.
    [88] Liu S, Hua H. Time-multiplexed dual-focal plane head-mounted display with a liquid lens. Opt Lett. 2009;34:1642–4.
    [89] Liu S, Hua H, Cheng D. A novel prototype for an optical see-through head-mounted display with addressable focus cues. IEEE Trans Vis Comput Graph. 2009;16:381–93.
    [90] Llull P, Bedard N, Wu W, Tosic I, Berkner K, Balram N (2015) Design and optimization of a near-eye multifocal display system for augmented reality. In: propagation through and characterization of distributed volume turbulence and atmospheric phenomena JTH3A-5.
    [91] Wu W, Llull P, Tosic I, Bedard N, Berkner K, Balram N. Content-adaptive focus configuration for near-eye multi-focal displays. In: IEEE International Conference on Multimedia and Expo; 2016. p. 1–6.
    [92] Chang JHR, Kumar BVK, Sankaranarayanan AC (2018) Towards multifocal displays with dense focal stacks. In: SIGGRAPH Asia 2018 technical papers 198.
    [93] Rathinavel K, Wang H, Blate A, Fuchs H. An extended depth-at-field volumetric near-eye augmented reality display. IEEE Trans Vis Comput Graph. 2018;24:2857–66.
    [94] Lee S, Jo Y, Yoo D, Cho J, Lee D, Lee B. Tomographic near-eye displays. Nat Commun. 2019;10:2497.
    [95] Zhan T, Lee YH, Wu ST. High-resolution additive light field near-eye display by switchable Pancharatnam–berry phase lenses. Opt Express. 2018;26:4863–72.
    [96] Wang X, Qin Y, Hua H, Lee YH, Wu ST. Digitally switchable multi-focal lens using freeform optics. Opt Express. 2018;26:11007–17.
    [97] Traub AC. Stereoscopic display using rapid varifocal mirror oscillations. Appl Opt. 1967;6:1085–7.
    [98] Muirhead JC. Variable focal length mirrors. Rev Sci Instrum. 1961;32:210–1.
    [99] Neil MA, Paige EG, Sucharov LO. Spatial-light-modulator-based three-dimensional multiplanar display. Proc SPIE. 1997;3012:337–41.
    [100] McQuaide SC, Seibel EJ, Kelly JP, Schowengerdt BT, Furness TA III. A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror. Displays. 2003;24:65–72.
    [101] Schowengerdt BT, Seibel EJ. True 3-D scanned voxel displays using single or multiple light sources. J Soc Inf Disp. 2006;14:135–43.
    [102] Hu X, Hua H. Distinguished student paper: a depth-fused multi-focal-plane display prototype enabling focus cues in stereoscopic displays. SID Symposium Digest of Technical Papers. 2011;42:691–4.
    [103] Hu X, Hua H. Design and assessment of a depth-fused multi-focal-plane display prototype. J Disp Technol. 2014;10:308–16.
    [104] Hu X, Hua H. High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics. Opt Express. 2014;22:13896–903.
    [105] Zhu S, Jin P, Qiao W, Gao L. High-resolution head mounted display using stacked LCDs and birefringent lens. In: Proc SPIE. 2018;10676:106761B.
    [106] Tan G, Zhan T, Lee YH, Xiong J, Wu ST. Polarization-multiplexed multiplane display. Opt Lett. 2018;43:5651–4.
    [107] Zhan T, Lee YH, Tan G, Xiong J, Yin K, Gou F, Zou J, Zhang N, Zhao D, Yang J, Liu S, Wu ST. Pancharatnam–berry optical elements for head-up and near-eye displays. JOSA B. 2019;36:D52–65.
    [108] Liu S, Hua H. A systematic method for designing depth-fused multi-focal plane three-dimensional displays. Opt Express. 2010;18:11562–73.
    [109] Ravikumar S, Akeley K, Banks MS. Creating effective focus cues in multi-plane 3D displays. Opt Express. 2011;19:20940–52.
    [110] Narain R, Albert RA, Bulbul A, Ward GJ, Banks MS, O'Brien JF. Optimal presentation of imagery with focus cues on multi-plane displays. ACM Trans Graph. 2015;34:59.
    [111] Mercier O, Sulai Y, Mackenzie K, Zannoli M, Hillis J, Nowrouzezahrai D, Lanman D. Fast gaze-contingent optimal decompositions for multifocal displays. ACM Trans Graph. 2017;36:237.
    [112] Byrd RH, Schnabel RB, Shultz GA. A trust region algorithm for nonlinearly constrained optimization. SIAM J Numer Anal. 1987;24:1152–70.
  • 加载中
计量
  • 文章访问数:  228
  • HTML全文浏览量:  3
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-16
  • 录用日期:  2020-02-25
  • 网络出版日期:  2020-03-30

目录

    /

    返回文章
    返回