留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-vortex laser enabling spatial and temporal encoding

Zhen Qiao Zhenyu Wan Guoqiang Xie Jian Wang Liejia Qian Dianyuan Fan

Zhen Qiao, Zhenyu Wan, Guoqiang Xie, Jian Wang, Liejia Qian, Dianyuan Fan. Multi-vortex laser enabling spatial and temporal encoding[J]. PhotoniX. doi: 10.1186/s43074-020-00013-x
引用本文: Zhen Qiao, Zhenyu Wan, Guoqiang Xie, Jian Wang, Liejia Qian, Dianyuan Fan. Multi-vortex laser enabling spatial and temporal encoding[J]. PhotoniX. doi: 10.1186/s43074-020-00013-x
Zhen Qiao, Zhenyu Wan, Guoqiang Xie, Jian Wang, Liejia Qian, Dianyuan Fan. Multi-vortex laser enabling spatial and temporal encoding[J]. PhotoniX. doi: 10.1186/s43074-020-00013-x
Citation: Zhen Qiao, Zhenyu Wan, Guoqiang Xie, Jian Wang, Liejia Qian, Dianyuan Fan. Multi-vortex laser enabling spatial and temporal encoding[J]. PhotoniX. doi: 10.1186/s43074-020-00013-x

Multi-vortex laser enabling spatial and temporal encoding

doi: 10.1186/s43074-020-00013-x
基金项目: 

The work is supported by the National Natural Science Foundation of China Grant No. 61675130, 11774116, 11721091, 61490713, 91850203, 61761130082, 11574001, the National Key R&D Program of China (2018YFB2200204, 2018YFB1801803), the Royal Society-Newton Advanced Fellowship, the Natural Science Foundation of Hubei Province of China (2018CFA048), the Key R&D Program of Guangdong Province (2018B030325002), the Program for HUST Academic Frontier Youth Team (2016QYTD05), and the Fundamental Research Funds for the Central Universities (2019kfyRCPY037).

Multi-vortex laser enabling spatial and temporal encoding

Funds: 

The work is supported by the National Natural Science Foundation of China Grant No. 61675130, 11774116, 11721091, 61490713, 91850203, 61761130082, 11574001, the National Key R&D Program of China (2018YFB2200204, 2018YFB1801803), the Royal Society-Newton Advanced Fellowship, the Natural Science Foundation of Hubei Province of China (2018CFA048), the Key R&D Program of Guangdong Province (2018B030325002), the Program for HUST Academic Frontier Youth Team (2016QYTD05), and the Fundamental Research Funds for the Central Universities (2019kfyRCPY037).

  • 摘要: Optical vortex is a promising candidate for capacity scaling in next-generation optical communications. The generation of multi-vortex beams is of great importance for vortex-based optical communications. Traditional approaches for generating multivortex beams are passive, unscalable and cumbersome. Here, we propose and demonstrate a multi-vortex laser, an active approach for creating multi-vortex beams directly at the source. By printing a specially-designed concentric-rings pattern on the cavity mirror, multi-vortex beams are generated directly from the laser. Spatially, the generated multi-vortex beams are decomposable and coaxial. Temporally, the multi-vortex beams can be simultaneously self-mode-locked, and each vortex component carries pulses with GHz-level repetition rate. Utilizing these distinct spatial-temporal characteristics, we demonstrate that the multi-vortex laser can be spatially and temporally encoded for data transmission, showing the potential of the developed multi-vortex laser in optical communications. The demonstrations may open up new perspectives for diverse applications enabled by the multi-vortex laser.
      关键词:
    •  / 
    •  / 
    •  
  • [1] Yao A, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photon. 2011;3:161–204.
    [2] Franke-Arnold S, Allen L, Padgett MJ. Advances in optical angular momentum. Laser Photon Rev. 2008;2:299–313.
    [3] Dholakia K, Čižmár T. Shaping the future of manipulation. Nature Photon. 2002;5:335–42.
    [4] MacDonald MP, Paterson L, Volke-Sepulveda K, Arlt J, Sibbett W, Dholakia K. Creation and manipulation of three-dimensional optically trapped structures. Science. 2002;296:1101–3.
    [5] Padgett MJ, Bowman R. Tweezers with a twist. Nature Photon. 2011;5:343–8.
    [6] Fürhapter S, Jesacher A, Bernet S, Ritsch-Marte M. Spiral phase contrast imaging in microscopy. Opt Express. 2005;13:689–94.
    [7] Fang L, Padgett MJ, Wang J. Sharing a common origin between the rotational and linear Doppler effects. Laser & Photon Rev. 2017;11:1700183.
    [8] Vieira J, Trines RMGM, Alves EP, Fonseca RA, Mendonca JT, Bingham R, et al. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering. Nat Commun. 2016;7:10371.
    [9] Elias NM. Photon orbital angular momentum in astronomy. Astron Astrophys. 2008;492:883–922.
    [10] Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature. 2001;412:313–6.
    [11] Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45:8185–9.
    [12] Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas’ko V, Barnet SM, et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express. 2004;12:5448–56.
    [13] Wang J, Yang JY, Fazal IM, Ahmed N, Yan Y, Huang H, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photon. 2012;6:488–96.
    [14] Lei T, Zhang M, Li Y, Jia P, Liu GN, Xu X, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light: Sci Appl. 2015;4:e257.
    [15] Wang J. Advances in communications using optical vortices. Photon Res. 2016;4:B14–28.
    [16] Wang J. Data information transfer using complex optical fields: a review and perspective. Chin Opt Lett. 2017;15:030005.
    [17] Wang J. Metasurfaces enabling structured light manipulation: advances and perspectives. Chin Opt Lett. 2018;16:050006.
    [18] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science. 2013;340:1545–8.
    [19] Wang A, Zhu L, Liu J, Du C, Mo Q, Wang J. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network. Opt Express. 2015;23:29457–66.
    [20] Wang A, Zhu L, Chen S, Du C, Mo Q, Wang J. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber. Opt Express. 2016;24:11716–26.
    [21] Chen S, Liu J, Zhao Y, Zhu L, Wang A, Li S, et al. Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber. Sci. Rep. 2016;6:38181.
    [22] Zhu L, Liu J, Mo Q, Du C, Wang J. Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber. Opt Express. 2016;24:16934–44.
    [23] Zhu L, Wang A, Chen S, Liu J, Mo Q, Du C, et al. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber. Opt. Express. 2017;25:25637–45.
    [24] Wang A, Zhu L, Wang L, Ai J, Chen S, Wang J. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Opt. Express. 2018;26:10038–47.
    [25] Willner AE, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, et al. Optical communications using orbital angular momentum beams. Adv Opt Photon. 2015;7:66–106.
    [26] Wang J. Twisted optical communications using orbital angular momentum. Sci China Phys Mech Astron. 2019;62:034201.
    [27] Liu J, Li SM, Zhu L, Wang AD, Chen S, Klitis C, et al. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light: Sci Appl. 2018;7:17148.
    [28] Fu S, Zhai Y, Zhou H, Zhang J, Wang T, Yin C, et al. Demonstration of free-space one-to many multicasting link from orbital angular momentum encoding. Opt Lett. 2019;44:4753–6.
    [29] Fu S, Zhai Y, Zhou H, Zhang J, Wang T, Liu X, et al. Experimental demonstration of free-space multi-state orbital angular momentum shift keying. Opt Express. 2019;27:33111–9.
    [30] Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators. Adv Opt Photon. 2016;8:200–27.
    [31] Beijersbergen MW, Coerwinkel RPC, Kristensen M, Woerdman JP. Helical wavefront laser beams produced with a spiral phase plate. Opt Commun. 1994;112:321–7.
    [32] Zhu L, Wang J. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element. Opt Express. 2015;23:26221–33.
    [33] Li S, Wang J. Adaptive power-controllable orbital angular momentum (OAM) multicasting. Sci Rep. 2015;5:9677.
    [34] Kim DJ, Kim JW. Direct generation of an optical vortex beam in a single-frequency Nd: YVO4 laser. Opt Lett. 2015;40:399–402.
    [35] Liu Q, Zhao Y, Zhou W, Zhang J, Wang L, Yao W. Shen D (2017) control of vortex helicity with a quater-wave plate in an Er: YAG ceramic solid state laser. IEEE Photonics J. 2017;9:1500408.
    [36] Huang X, Xu B, Cui S, Xu H, Cai Z, Chen L. Direct generation of vortex laser by rotating induced off-axis pumping. IEEE J Sel Top Quantum Electron. 2018;24:1601606.
    [37] Wang S, Zhang SL, Qiao HC, Li P, Hao MH, Yang HM, et al. Direct generation of vortex beams from a double-end polarized pumped Yb: KYW laser. Opt Express. 2018;26:26925–32.
    [38] Ito A, Kozawa Y, Sato S. Generation of hollow scalar and vector beams using a spot-defect mirror. J Opt Soc Am A. 2010;27:2072–7.
    [39] Zhou J, Zhang W, Chen L. Experimental detection of high-order or fractional orbital angular momentum of light based on a robust mode converter. Appl Phys Lett. 2016;108:111108.
    [40] Beijersbergen MW, Allen L, Van Der Veen HELO, Woerdman JP. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt Commun. 1993;96:123–32.
    [41] Zhang Y, Yu H, Zhang H, Xu X, Xu J, Wang J. Self-mode-locked Laguerre-Gaussian beam with staged topological charge by thermal-optical field coupling. Opt Express. 2016;24:5514–22.
    [42] Chang MT, Liang HC, Su KW, Chen YF. Exploring transverse pattern formation in a dual-polarization self-mode-locked monolithic Yb: KGW laser and generating a 25-GHz subpicosecond vortex beam via gain competition. Opt Express. 2016;24:8754–62.
    [43] Li Z, Peng J, Li Q, Gao Y, Li J, Cao Q. Generation of picosecond vortex beam in a self-mode-locked Nd:YVO4 laser. Opt Lett. 2017;13:188–91.
    [44] Liang HC, Huang YJ, Lin YC, Lu TH, Chen YF, Huang KF. Picosecond optical vortex converted from multigigahertz self-mode-locked high-order Hermite-Gaussian Nd: GdVO4 lasers. Opt Lett. 2009;34:3842–4.
    [45] Igarashi K, Katoh K, Kikuchi K, Imai K, Kourogi M. Generation of 10-GHz 2-ps optical pulse train over the C band based on an optical comb generator and its application to 160-Gbit/s OTDM systems. In: 34th European conference on optical communication paper Tu. 3. D. I; 2008.
    [46] Hu H, Mulvad HCH, Peucheret C, Galili M, Clausen A, Jeppesen P, et al. 10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation. Opt Express. 2011;19:343–9.
    [47] Chen YF, Huang YJ, Chiang PY, Lin YC. Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers. Appl Phys B Lasers Opt. 2010;103:841–6.
    [48] Huang YJ, Tzeng YS, Cho HH, Chen YF. Effect of spatial hole burning on a dual-wavelength mode-locked laser based on compactly combined dual gain media. Photon.Res. 2014;2:161–7.
    [49] Bai Y, Chen S, Wang Z, Zhang G. Novel self-mode-locking mechanism in narrow-band lasers. Appl Phys Lett. 1993;63:2597–9.
    [50] Shi JY, Fang Y, Chi N. Time division multiplexed orbital angular momentum access system. Optim Eng. 2016;55:036106.
    [51] Chen YF, Chang MY, Zhuang WZ, Su KW, Huang KF, Liang HC. Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity. Laser Photon Rev. 2015;9:91–7.
    [52] Clarkson WA, Hanna DC. Effects of transverse-mode profile on slope efficiency and relaxation oscillations in a longitudinally-pumped laser. J Mod Opt. 1989;36:483–98.
  • 加载中
计量
  • 文章访问数:  217
  • HTML全文浏览量:  3
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-18
  • 录用日期:  2020-02-06
  • 网络出版日期:  2020-05-15

目录

    /

    返回文章
    返回