[1] |
Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med. 2011;365(23):2188-2197. https://doi.org/10.1056/NEJMoa1100648.
|
[2] |
Longerich T, Endris V, Neumann O, Rempel E, Kirchner M, Abadi Z, et al. RSPO2 gene rearrangement: a powerful driver of β-catenin activation in liver tumours. Gut. 2019;68(7):1287-96. https://doi.org/10.1136/gutjnl-2018-317632.
|
[3] |
Balázs M, Koroknai V, Szász I, Ecsedi S. Detection of CCND1 Locus Amplification by Fluorescence In Situ Hybridization. Methods Mol Biol. 2018;1726:85-100. https://doi.org/10.1007/978-1-4939-7565-5_9.
|
[4] |
Worlikar T, Mendiratta-Lala M, Vlaisavljevich E, Hubbard R, Shi J, Hall TL, et al. Effects of histotripsy on local tumor progression in vivo Orthotopic rodent liver tumor model. BME Frontiers. 2020;1-14. https://doi.org/10.34133/2020/9830304.
|
[5] |
Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature. 2009;462(7276):1005-10. https://doi.org/10.1038/nature08645.
|
[6] |
Potts PJ, Ellis AT, Kregsamer P, Streli C. X-ray fluorescence spectrometry. J Anal At Spectrom. 1999;14(11):1773-99.
|
[7] |
Höhne J, Hohenberger C, Proescholdt M, Riemenschneider MJ, Wendl C, Brawanski A, et al. Fluorescein sodium-guided resection of cerebral metastases-an update. Acta Neurochir (Wien). 2017;159(2):363-7. https://doi.org/10.1007/s00701-016-3054-3.
|
[8] |
Stummer W, Tonn JC, Goetz C, Ullrich W, Stepp H, Bink A,et al. 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery. 2014;74(3):310-9. discussion 319-320. https://doi.org/10.1227/NEU.0000000000000267.
|
[9] |
Ishizawa T, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki T, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer. 2009;115(11):2491-504. https://doi.org/10.1002/cncr.24291.
|
[10] |
Zhu Y, Zheng W, Wang W, et al. Raman tensor of layered black phosphorus. PhotoniX. 2020;1:17.
|
[11] |
11.You AYF, Bergholt MS, St-Pierre JP, Kit-Anan W, Pence IJ, Chester AH, et al. Raman spectroscopy imaging reveals interplay between atherosclerosis and medial calcification in the human aorta. Sci Adv. 2017;3(12):e1701156. https://doi.org/10.1126/sciadv.1701156.
|
[12] |
Peng Y, Shi C, Wu X, Zhu Y, Zhuang S. Terahertz Imaging and Spectroscopy in Cancer Diagnostics: A Technical Review. BME Frontiers. 2020;2547609.
|
[13] |
Peng Y, Shi C, Zhu Y, Gu M, Zhuang S. Terahertz spectroscopy in biomedical field: a review on signal-to-noise ratio improvement. PhotoniX. 2020;1(1). https://doi.org/10.1186/s43074-020-00011-z.
|
[14] |
Ge H, Jiang Y, Lian F, Zhang Y, Xia S. Quantitative determination of aflatoxin B1 concentration in acetonitrile by chemometric methods using terahertz spectroscopy. Food Chem. 2016;209:286–92. https://doi.org/10.1016/j.foodchem.2016.04.070.
|
[15] |
Wang Z, Wu J, Yang W, Bera AK, Kamenskyi D, Islam ATMN, et al. Experimental observation of Bethe strings. Nature. 2018;554(7691):219–23. https://doi.org/10.1038/nature25466.
|
[16] |
Chanana A, Liu X, Zhang C, Vardeny ZV, Nahata A. Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites. Sci Adv. 2018;4(5):eaar7353. https://doi.org/10.1126/sciadv.aar7353.
|
[17] |
Lu S, Zhang X, Zhang Z, Yang Y, Xiang Y. Quantitative measurements of binary amino acids mixtures in yellow foxtail millet by terahertz time domain spectroscopy. Food Chem. 2016;211:494–501. https://doi.org/10.1016/j.foodchem.2016.05.079.
|
[18] |
Peng Y, Shi C, Xu M, Kou T, Wu X, Song B, et al. Qualitative and quantitative identification of components in mixture by terahertz spectroscopy. IEEE Trans Terahertz Sci Technol. 2018;8(6):696–701. https://doi.org/10.1109/TTHZ.2018.2867816.
|
[19] |
Wu X, Dai Y, Wang L, Peng Y, Lu L, Zhu Y, et al. Diagnosis of methylglyoxal in blood by using far-infrared spectroscopy and o-phenylenediamine derivation. Biomed. Opt. Express. 2020;11(2):963–70. https://doi.org/10.1364/BOE.381542.
|
[20] |
Stantchev RI, Sun B, Hornett SM, Hobson PA, Gibson GM, Padgett MJ, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci Adv. 2016;2(6):e1600190. https://doi.org/10.1126/sciadv.1600190.
|
[21] |
Lee SH, Lee D, Choi MH, Son JH, Seo M. Highly sensitive and selective detection of steroid hormones using terahertz molecule-specific sensors. Anal Chem. 2019;91(10):6844–9. https://doi.org/10.1021/acs.analchem.9b01066.
|
[22] |
Elgabarty H, Kampfrath T, Bonthuis DJ, Balos V, Kaliannan NK, Loche P, et al. Energy transfer within the hydrogen bonding network of water following resonant terahertz excitation. Sci Adv. 2020;6(17):eaay7074. https://doi.org/10.1126/sciadv.aay7074.
|
[23] |
El Haddad J, de Miollis F, Bou Sleiman J, Canioni L, Mounaix P, Bousquet B. Chemometrics applied to quantitative analysis of ternary mixtures by terahertz spectroscopy. Anal Chem. 2014;86(10):4927–33. https://doi.org/10.1021/ac500253b.
|
[24] |
Wu X, Wang L, Peng Y, Wu F, Cao J, Chen X, et al. Quantitative analysis of direct oral anticoagulant rivaroxaban by terahertz spectroscopy. Analyst. 2020;145(11):3909–15. https://doi.org/10.1039/D0AN00268B.
|
[25] |
Du SQ, Li H, Xie L, Chen L, Peng Y, Zhu YM, et al. Vibrational frequencies of anti-diabetic drug studied by terahertz time-domain spectroscopy. Appl Phys Lett. 2012;100:143702.
|
[26] |
Sommer S, Koch M, Adams A. Terahertz time-domain spectroscopy of plasticized poly(vinyl chloride). Anal Chem. 2018;90(4):2409–13. https://doi.org/10.1021/acs.analchem.7b04548.
|
[27] |
Gu H, Shi C, Wu X, Peng Y. Molecular methylation detection based on terahertz metamaterial technology. Analyst. 2020;145(20):6705–12. https://doi.org/10.1039/D0AN01062F.
|
[28] |
Peng Y, Yuan X, Zou X, Chen W, Huang H, Zhao H, et al. Terahertz identification and quantification of neurotransmitter and neurotrophy mixture. Biomed Opt Express. 2016;7(11):4472-9. https://doi.org/10.1364/BOE.7.004472.
|
[29] |
Li T, Ma H, Peng Y, Chen X, Zhu Z, Wu X, et al. Gaussian numerical analysis and terahertz spectroscopic measurement of homocysteine. Biomed Opt Express. 2018;9(11):5467–76. https://doi.org/10.1364/BOE.9.005467.
|
[30] |
Ajito K, Ueno Y, Kim JY, Sumikama T. Capturing the freeze-drying dynamics of NaCl nanoparticles using THz spectroscopy. J Am Chem Soc. 2018;140(42):13793–7. https://doi.org/10.1021/jacs.8b07828.
|
[31] |
Zhou D, Liu Y. Renal fibrosis in 2015: Understanding the mechanisms of kidney fibrosis. Nat Rev Nephrol. 2016;12(2):68-70. https://doi.org/10.1038/nrneph.2015.215
|
[32] |
Malvar A, Pirruccio P, Alberton V, Lococo B, Recalde C, Fazini B, et al. Histologic versus clinical remission in proliferative lupus nephritis. Nephrol Dial Transplant. 2017;32(8):1338-44. https://doi.org/10.1093/ndt/gfv296.
|
[33] |
Mengel M, Chapman JR, Cosio FG, Cavaille-Coll MW, Haller H, Halloran PF, et al. Protocol biopsies in renal transplantation: insights into patient management and pathogenesis. Am J Transplant. 2007;7(3):512–7. https://doi.org/10.1111/j.1600-6143.2006.01677.x.
|
[34] |
Zhuo L, Wang H, Chen D, Lu H, Zou G, Li W. Alternative renal biopsies: past and present. Int Urol Nephrol. 2018;50(3):475–9. https://doi.org/10.1007/s11255-017-1668-x.
|
[35] |
Torres HR, Queirós S, Morais P, Oliveira B, Fonseca JC, Vilaça JL. Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: a systematic review. Comput Meth Prog Bio. 2018;157:49–67. https://doi.org/10.1016/j.cmpb.2018.01.014.
|
[36] |
Zhang XQ, Li X, Zhou WQ, Liu X, Huang JL, Zhang YY, et al. Serum Lysyl oxidase is a potential diagnostic biomarker for kidney fibrosis. Am J Nephrol. 2020;51(11):907–18. https://doi.org/10.1159/000509381.
|
[37] |
Nakhjavani M, Etemadi J, Pourlak T, Mirhosaini Z, Zununi Vahed S, Abediazar S. Plasma levels of miR-21, miR-150, miR-423 in patients with lupus nephritis. Iran J Kidney Dis. 2019;13(3):198–206.
|
[38] |
Hewitson TD, Smith ER, Samuel CS. Qualitative and quantitative analysis of fibrosis in the kidney. Nephrology (Carlton). 2014;19(11):721-6. https://doi.org/10.1111/nep.12321.
|
[39] |
Samuel CS. Determination of collagen content, concentration, and sub-types in kidney tissue. Methods Mol Biol. 2009;466:223-35. https://doi.org/10.1007/978-1-59745-352-3_16.
|
[40] |
Skibba M, Hye Khan MA, Kolb LL, Yeboah MM, Falck JR, Amaradhi R, et al. Epoxyeicosatrienoic acid analog decreases renal fibrosis by reducing epithelial-to-mesenchymal transition. Front Pharmacol. 2017;8:406. https://doi.org/10.3389/fphar.2017.00406.
|
[41] |
Frisch MJ, Trucks G, Schlegel HB, Scuseria GE, Robb MA, Cheeseman J, et al. Gaussian 09 Revision A.1: Gaussian Inc; 2009.
|
[42] |
Joseph J, Jemmis ED. Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J Am Chem Soc. 2007;129(15):4620–32. https://doi.org/10.1021/ja067545z.
|
[43] |
Shen YC, Upadhya PC, Linfield EH, Davies AG. Temperature-dependent low-frequency vibrational spectra of purine and adenine. Appl Phys Lett. 2003;82(14):2350–2. https://doi.org/10.1063/1.1565680.
|