留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dielectric metasurface zone plate for the generation of focusing vortex beams

Yufeng Hu Xuan Liu Mingke Jin Yutao Tang Xuecai Zhang King Fai Li Yan Zhao Guixin Li Jing Zhou

Yufeng Hu, Xuan Liu, Mingke Jin, Yutao Tang, Xuecai Zhang, King Fai Li, Yan Zhao, Guixin Li, Jing Zhou. Dielectric metasurface zone plate for the generation of focusing vortex beams[J]. PhotoniX. doi: 10.1186/s43074-021-00035-z
引用本文: Yufeng Hu, Xuan Liu, Mingke Jin, Yutao Tang, Xuecai Zhang, King Fai Li, Yan Zhao, Guixin Li, Jing Zhou. Dielectric metasurface zone plate for the generation of focusing vortex beams[J]. PhotoniX. doi: 10.1186/s43074-021-00035-z
Yufeng Hu, Xuan Liu, Mingke Jin, Yutao Tang, Xuecai Zhang, King Fai Li, Yan Zhao, Guixin Li, Jing Zhou. Dielectric metasurface zone plate for the generation of focusing vortex beams[J]. PhotoniX. doi: 10.1186/s43074-021-00035-z
Citation: Yufeng Hu, Xuan Liu, Mingke Jin, Yutao Tang, Xuecai Zhang, King Fai Li, Yan Zhao, Guixin Li, Jing Zhou. Dielectric metasurface zone plate for the generation of focusing vortex beams[J]. PhotoniX. doi: 10.1186/s43074-021-00035-z

Dielectric metasurface zone plate for the generation of focusing vortex beams

doi: 10.1186/s43074-021-00035-z
基金项目: 

This research was supported by the National Natural Science Foundation of China (91950114, 11774145), China Postdoctoral Science Foundation (No. 2020 M680271), Guangdong Provincial Innovation and Entrepreneurship Project (2017ZT07C071), Natural Science Foundation of Shenzhen Innovation Commission (JCYJ20200109140808088), Shenzhen DRC project[2018]1433, and Beijing Postdoctoral Research Foundation (Q6101013202101).

Dielectric metasurface zone plate for the generation of focusing vortex beams

Funds: 

This research was supported by the National Natural Science Foundation of China (91950114, 11774145), China Postdoctoral Science Foundation (No. 2020 M680271), Guangdong Provincial Innovation and Entrepreneurship Project (2017ZT07C071), Natural Science Foundation of Shenzhen Innovation Commission (JCYJ20200109140808088), Shenzhen DRC project[2018]1433, and Beijing Postdoctoral Research Foundation (Q6101013202101).

  • 摘要: Vortex beams carrying orbital angular momentum have important applications in high dimensional optical information processing, manipulations of tiny particles, super-resolution imaging and so on. Among various optical components, metasurface represents an ideal platform for realizing vortex beams with multiple optical functionalities due to its strong ability in manipulating the phase, polarization and amplitude of light. A metasurface combing the functions of a lens and a vortex beam generator can greatly shrink the size of many optical systems. Here, we alternatively propose a new metasurface design based on the concept of a Fresnel zone plate to generate, focus the vortex beams, and perform on-axis interference between different vortex beams. These functions are experimentally demonstrated through encoding the spiral phase profiles into the odd and even zones of a dielectric metasurface. The proposed vortex beam generation strategy employs the advantages of both the Fresnel zone plate and the metasurface, and may open new routes for high-dimensional optical information processing.
      关键词:
    •  / 
    •  / 
    •  
  • [1] Allen L, Beijersbergen MW, Spreeuw R, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45:8185–9.
    [2] Simpson NB, Allen L, Padgett MJ. Optical tweezers and optical spanners with Laguerre–Gaussian modes. J Mod Opt. 1996;43:2485–91.
    [3] Grier DG. A revolution in optical manipulation. Nature. 2003;424:810–6.
    [4] Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas’ko V, Barnett SM, et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express. 2004;12:5448–56.
    [5] Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature. 2001;412:313–6.
    [6] Vallone G, D'Ambrosio V, Sponselli A, Slussarenko S, Marrucci L, Sciarrino F, et al. Free-space quantum key distribution by rotation-invariant twisted photons. Phys Rev Lett. 2014;113:060503.
    [7] Lavery MP, Speirits FC, Barnett SM, Padgett MJ. Detection of a spinning object using light's orbital angular momentum. Science. 2013;341:537–40.
    [8] Georgi P, Schlickriede C, Li G, Zhang S, Zentgraf T. Rotational Doppler shift induced by spin-orbit coupling of light at spinning metasurfaces. Optica. 2017;4:1000–5.
    [9] Beijersbergen M, Coerwinkel R, Kristensen M, Woerdman J. Helical wavefront laser beams produced with a spiral phase plate. Opt Commun. 1994;112:321–7.
    [10] Leach J, Gibson GM, Padgett MJ, Esposito E, McConnell G, Wright AJ, et al. Generation of achromatic Bessel beams using a compensated spatial light modulator. Opt Express. 2006;14:5581–7.
    [11] Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334:333–7.
    [12] Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352:1190–4.
    [13] Khorasaninejad M, Capasso F. Metalenses: Versatile multifunctional photonic components. Science. 2017;358:eaam8100.
    [14] Khorasaninejad M, Zhu AY, Roques-Carmes C, Chen WT, Oh J, Mishra I, et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 2016;16:7229–34.
    [15] Balli F, Sultan M, Lami SK, Hastings JT. A hybrid achromatic metalens. Nat Commun. 2020;11:1–8.
    [16] Zheng G, Müuhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol. 2015;10:308–12.
    [17] Wang L, Kruk S, Tang H, Li T, Kravchenko I, Neshev DN, et al. Grayscale transparent metasurface holograms. Optica. 2016;3:1504–5.
    [18] Deng Z-L, Li G. Metasurface optical holography. Mater Today Phys. 2017;3:16–32.
    [19] Mao N, Deng J, Zhang X, Tang Y, Jin M, Li Y, et al. Nonlinear diatomic metasurface for real and Fourier space image encoding. Nano Lett. 2020;20:7463–8.
    [20] Ding X, Wang Z, Hu G, Liu J, Zhang K, Li H, et al. Metasurface holographic image projection based on mathematical properties of Fourier transform. PhotoniX. 2021;1:16.
    [21] Chen WT, Yang K-Y, Wang C-M, Huang Y-W, Sun G, Chiang I-D, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 2014;14:225–30.
    [22] Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, et al. Helicity multiplexed broadband metasurface hologram. Nat Commun. 2015;6:8241.
    [23] Li G, Kang M, Chen S, Zhang S, Pun EYB, Cheah KW, et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Lett. 2013;13:4148–51.
    [24] Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma ML, Hasman E. Photonic spin-controlled multifunctional shared-aperture antenna array. Science. 2016;352:1202–6.
    [25] Devlin RC, Ambrosio A, Rubin NA, Mueller JB, Capasso F. Arbitrary spin-to-orbital angular momentum conversion of light. Science. 2017;358:896–901.
    [26] Yuan Y, Zhang K, Ratni B, Song Q, Ding X, Wu Q, et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nat Commun. 2020;11:4186.
    [27] Yuan Y, Sun S, Chen Y, Zhang K, Ding X, Ratni B, et al. A fully phase-modulated metasurface as an energy-controllable circular polarization router. Adv Sci. 2020;7:2001437.
    [28] Mehmood MQ, Mei S, Hussain S, Huang K, Siew SY, Zhang L, et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv Mater. 2016;28:2533–9.
    [29] Ma X, Pu M, Li X, Huang C, Wang Y, Pan W, et al. A planar chiral meta-surface for optical vortex generation and focusing. Sci Rep. 2015;5:10365.
    [30] Ou K, Li G, Li T, Yang H, Yu F, Chen J, et al. High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces. Nanoscale. 2018;10:19154–61.
    [31] Bai X, Kong F, Qian J, Song Y, He C, Liang X, et al. Polarization-insensitive metasurface lens for efficient generation of convergent OAM beams. IEEE Antennas and Wireless Propagation Lett. 2019;18:2696–700.
    [32] Zhang K, Yuan Y, Zhang D, Ding X, Ratni B, Burokur SN, et al. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region. Opt Express. 2018;26:1351–60.
    [33] Liu X, Deng J, Jin M, Tang Y, Zhang X, Li KF, et al. Cassegrain metasurface for generation of orbital angular momentum of light. Appl Phys Lett. 2019;115:221102.
    [34] Ding F, Chen Y, Bozhevolnyi SI. Focused vortex-beam generation using gap-surface plasmon metasurfaces. Nanophotonics. 2020;9:371–8.
    [35] Tang S, Ding F. High-efficiency focused optical vortex generation with geometric gap-surface plasmon metalenses. Appl Phys Lett. 2020;117:011103.
    [36] Divitt S, Zhu W, Zhang C, Lezec HJ, Agrawal A. Ultrafast optical pulse shaping using dielectric metasurfaces. Science. 2019;364:890–4.
    [37] Wang K, Titchener JG, Kruk SS, Xu L, Chung H-P, Parry M, et al. Quantum metasurface for multiphoton interference and state reconstruction. Science. 2018;361:1104–8.
    [38] Stav T, Faerman A, Maguid E, Oren D, Kleiner V, Hasman E, et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science. 2018;361:1101–4.
    [39] Georgi P, Massaro M, Luo K-H, Sain B, Montaut N, Herrmann H, et al. Metasurface interferometry toward quantum sensors. Light Sci Appl. 2019;8:70.
    [40] Zhu L, Liu X, Sain B, Wang M, Schlickriede C, Tang Y, et al. Dielectric metasurface optical chip for the generation of cold atoms. Sci Adv. 2020;6:eabb6667.
    [41] Li L, Liu Z, Ren X, Wang S, Su V-C, Chen M-K, et al. Metalens-array–based high-dimensional and multiphoton quantum source. Science. 2020;368:1487–90.
    [42] Attwood D. Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications. Cambridge: Cambridge University Press; 1999.
    [43] Born M, Wolf E. Principles of optics. Cambridge: Cambridge University Press; 1980.
  • 加载中
计量
  • 文章访问数:  150
  • HTML全文浏览量:  0
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-27
  • 录用日期:  2021-06-11
  • 网络出版日期:  2021-06-23

目录

    /

    返回文章
    返回