留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress in electro-optic polymer for ultra-fast communication

Fateh Ullah Niping Deng Feng Qiu

Fateh Ullah, Niping Deng, Feng Qiu. Recent progress in electro-optic polymer for ultra-fast communication[J]. PhotoniX. doi: 10.1186/s43074-021-00036-y
引用本文: Fateh Ullah, Niping Deng, Feng Qiu. Recent progress in electro-optic polymer for ultra-fast communication[J]. PhotoniX. doi: 10.1186/s43074-021-00036-y
Fateh Ullah, Niping Deng, Feng Qiu. Recent progress in electro-optic polymer for ultra-fast communication[J]. PhotoniX. doi: 10.1186/s43074-021-00036-y
Citation: Fateh Ullah, Niping Deng, Feng Qiu. Recent progress in electro-optic polymer for ultra-fast communication[J]. PhotoniX. doi: 10.1186/s43074-021-00036-y

Recent progress in electro-optic polymer for ultra-fast communication

doi: 10.1186/s43074-021-00036-y
基金项目: 

This work is supported by National Natural Science Foundation of China (62075184).

Recent progress in electro-optic polymer for ultra-fast communication

Funds: 

This work is supported by National Natural Science Foundation of China (62075184).

  • 摘要: The rocketed development concerning electro-optic polymers fundamentally motivated by its pragmatic application in envisioning second-order nonlinear optics and waveguiding are cardinal. Modern synthetic strategies consigned an outstanding optical quality amorphous polymers with enhanced properties. Documented data revealed a huge progress in understanding their implementation, however challenges still exist regarding their temporal stabilities etc. This review delivers a brief investigation of nonlinear optical (NLO) polymer materials demonstrated over previous decades. Besides, their categorical explanation along with their structural architecting via engineering polymeric backbone or functionalization of the molecular entities have been reviewed. Correspondingly, their temporal and thermal stabilities accompanied by NLO characteristics features are also discussed.
      关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Benea-Chelmus I-C, Salamin Y, Settembrini FF, Fedoryshyn Y, Heni W, Elder DL, et al. Electro-optic interface for ultrasensitive intracavity electric field measurements at microwave and terahertz frequencies. Optica. 2020;7(5). https://doi.org/10.1364/optica.384160.
    [2] Spring AM, Qiu F, Hong J, Bannaron A, Cheng X, Yokoyama S. Adamantyl and carbazole containing trans-poly (norbornene-dicarboximide) s as electro-optic chromophore hosts. Polymer. 2019;172:382–90. https://doi.org/10.1016/j.polymer.2019.04.015.
    [3] Ma H, Wu J, Herguth P, Chen B, Jen AK. A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics. Chem Mater. 2000;12(5):1187–9. https://doi.org/10.1021/cm000073h.
    [4] Brambilla G. Optical fibre nanowires and microwires: a review. J Optics-UK. 2010;12(4):043001. https://doi.org/10.1088/2040-8978/12/4/043001.
    [5] Westbrook PS, Kremp T, Feder KS, Taunay TF, Monberg EM, Wu H, et al. Multicore optical fiber grating arrays for sensing applications. Ecoc Eur Conf Opt Commun. 2016;35(6):1248–52. https://doi.org/10.1109/JLT.2017.2661680.
    [6] Luo J, Jen AK. Highly efficient organic electrooptic materials and their hybrid systems for advanced photonic devices. IEEE J Sel Top Quant. 2013;19(6):42–53. https://doi.org/10.1109/jstqe.2013.2268385.
    [7] Oh MC, Zhang H, Zhang C, Erlig H, Chang Y, Tsap B, et al. Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore. IEEE J Sel Top Quant. 2001;7(5):826–35. https://doi.org/10.1109/2944.979344.
    [8] Shi Z, Luo J, Huang S, Polishak BM, Zhou XH, Liff S, et al. Achieving excellent electro-optic activity and thermal stability in poled polymers through an expeditious crosslinking process. J Mater Chem C. 2012;22(3):951–9. https://doi.org/10.1039/C1JM14254B.
    [9] Dalton LR, Sullivan PA, Bale DH. Electric field poled organic electro-optic materials: state of the art and future prospects. Chem Rev. 2010;110(1):25–55. https://doi.org/10.1021/cr9000429.
    [10] Liu JL, Xu GM, Liu FG, Kityk I, Liua XH, Zhen Z. Recent advances in polymer electro-optic modulators. RSC Adv. 2015;5(21):15784–94. https://doi.org/10.1039/c4ra13250e.
    [11] Ding R, Baehr-Jones T, Kim W, Spott A, Fournier M, Fedeli J, et al. Sub-volt silicon-organic electro-optic modulator with 500 mhz bandwidth. J Lightwave Technol. 2011;29(8):1112–7. https://doi.org/10.1109/jlt.2011.2122244.
    [12] Dalton LR. Theory-inspired development of organic electro-optic materials. Thin Solid Films. 2009;518(2):428–31. https://doi.org/10.1016/j.tsf.2009.07.001.
    [13] Shi Z, Hau S, Luo J, Kim TD, Jen KY. Highly efficient diels–alder crosslinkable electro-optic dendrimers for electric-field sensors. Adv Funct Mater. 2007;17(14):2557–63. https://doi.org/10.1002/adfm.200600778.
    [14] Benight SJ, Bale DH, Olbricht BC, Dalton LR. Organic electro-optics: Understanding material structure/function relationships and device fabrication issues. J Mater Chem. 2009;19(40). https://doi.org/10.1039/b905368a.
    [15] Taylor EW, Nichter JE, Nash FD, Haas F, Szep AA, Michalak RJ, et al. Radiation resistance of electro-optic polymer-based modulators. Appl Phys Lett. 2005;86(20):3335. https://doi.org/10.1063/1.1927713.
    [16] Liu J, Ouyang C, Huo F, He W, Cao A. Progress in the enhancement of electro-optic coefficients and orientation stability for organic second-order nonlinear optical materials. Dyes Pigments. 2020;181:108509. https://doi.org/10.1016/j.dyepig.2020.108509.
    [17] Wu JY, Li ZA, Luo JD, Jen AK. High-performance organic second- and third-order nonlinear optical materials for ultrafast information processing. J Mater Chem C C. 2020;8(43):15009–26. https://doi.org/10.1039/d0tc03224g.
    [18] Han XY, Wu ZL, Yang SC, Shen FF, Liang YX, Wang LH, et al. Recent progress of imprinted polymer photonic waveguide devices and applications. Polymers-Basel. 2018;10(6). https://doi.org/10.3390/polymer10060603.
    [19] Hu C, Chen Z, Xiao H, Zhen Z, Liu X, Bo S. Synthesis and characterization of a novel indoline based nonlinear optical chromophore with excellent electro-optic activity and high thermal stability by modifying the π-conjugated bridges. J Mater Chem C C. 2017;5(21):5111–8. https://doi.org/10.1039/c7tc00735c.
    [20] Yang Y, Xu H, Liu F, Wang H, Deng G, Si P, et al. Synthesis and optical nonlinear property of y-type chromophores based on double-donor structures with excellent electro-optic activity. J Mater Chem C C. 2014;2(26):5124–32. https://doi.org/10.1039/c4tc00508b.
    [21] Lei J, Guo C, Liu F, Chen S, Shi WJ, Wang Z, et al. Enhancement of electro-optic properties of nonlinear optical chromophores by introducing pentafluorobenzene group into the donor and π-bridge. Dyes Pigments. 2019;170:107607. https://doi.org/10.1016/j.dyepig.2019.107607.
    [22] Cheng Z, Tang R, Wang R, Xie Y, Chen P, Liu G, et al. Photo-crosslinkable second-order nonlinear optical polymer: facile synthesis and enhanced nlo thermostability. Polym Chem. 2018;9(25):3522–7. https://doi.org/10.1039/c8py00686e.
    [23] Salamin Y, Benea-Chelmus IC, Fedoryshyn Y, Heni W, Elder DL, Dalton LR, et al. Compact and ultra-efficient broadband plasmonic terahertz field detector. Nat Commun. 2019;10(1):5550. https://doi.org/10.1038/s41467-019-13490-x.
    [24] Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W, et al. Low-loss plasmon-assisted electro-optic modulator. Nature. 2018;556(7702):483–6. https://doi.org/10.1038/s41586-018-0031-4.
    [25] Salamin Y, Benea-Chelmus IC, Fedoryshyn Y, Heni W, Leuthold J. Compact and ultra-efficient broadband plasmonic terahertz field detector. Nat Commun. 2019;10(1):5550. https://doi.org/10.1038/s41467-019-13490-x.
    [26] Rau I, Puntus L, Kajzar F. Recent advances with electro-optic polymers. Mol Cryst Liq Cryst. 2019;694(1):73–116. https://doi.org/10.1080/15421406.2020.1723898.
    [27] Wu J, Peng C, Xiao H, Bo S, Qiu L, Zhen Z, et al. Donor modification of nonlinear optical chromophores: synthesis, characterization, and fine-tuning of chromophores’ mobility and steric hindrance to achieve ultra large electro-optic coefficients in guest–host electro-optic materials. Dyes Pigments. 2014;104:15–23. https://doi.org/10.1016/j.dyepig.2013.12.023.
    [28] Liu F, Xiao H, Yang Y, Wang H, Zhang H, Liu J, et al. The design of nonlinear optical chromophores exhibiting large electro-optic activity and high thermal stability: the role of donor groups. Dyes Pigments. 2016;130:138–47. https://doi.org/10.1016/j.dyepig.2016.03.003.
    [29] Huo F, Zhang H, Chen Z, Qiu L, Liu J, Bo S, et al. Novel nonlinear optical push–pull fluorene dyes chromophore as promising materials for telecommunications. J Mater Sci-Mater El. 2019;30(13):12180–5. https://doi.org/10.1007/s10854-019-01576-7.
    [30] Stähelin M, Walsh CA, Burland DM, Miller RD, Twieg RJ, Volksen W. Orientational decay in poled second-order nonlinear optical guest-host polymers: temperature dependence and effects of poling geometry. J Appl Phys. 1993;73(12):8471–9. https://doi.org/10.1063/1.353421.
    [31] Yu F, Spring AM, Li L, Qiu F, Yamamoto K, Maeda D, et al. An enhanced host–guest electro-optical polymer system using poly (norbornene-dicarboximides) via ROMP. Polym Chem. 2013;51(6):1278–84. https://doi.org/10.1002/pola.26505.
    [32] Deng G, Bo S, Zhou T, Zhang R, Liu J, Liu X, et al. Hydrogen-bonded network: an effective approach to improve the thermal stability of organic/polymer electro-optic materials. Sci China Chem. 2013;56(2):169–73. https://doi.org/10.1007/s11426-012-4799-z.
    [33] Ouyang C, Liu J, Liu Q, Li Y, Yan D, Wang Q, et al. Preparation of main-chain polymers based on novel monomers with d−π–a structure for application in organic second-order nonlinear optical materials with good long-term stability. ACS Appl Materr Inter. 2017;9(12):10366–70. https://doi.org/10.1021/acsami.7b00742.
    [34] Xu C, Wu B, Dalton LR, Ranon PM, Shi Y, Steier WH. New random main-chain, second-order nonlinear optical polymers. Macromolecules. 1992;25(24):6716–8. https://doi.org/10.1021/ma00050a052.
    [35] Pan J, Chen M, Warner W, He M, Dalton L, Hogen-Esch TE. Synthesis of block copolymers containing a main chain polymeric nlo segment. Macromolecules. 2000;33(13):4673–81. https://doi.org/10.1021/ma9921201.
    [36] Lin HL, Juang TY, Chan LH, Lee RH, Dai SA, Liu YL, et al. Sequential self-repetitive reaction toward wholly aromatic polyimides with highly stable optical nonlinearity. Polym Chem. 2011;2(3):685–93. https://doi.org/10.1039/c0py00157k.
    [37] Song MY, Jeon B, Lee JY. Synthesis and properties of novel nonlinear optical polyurethane containing dicyanovinylnitroresorcinoxy group. Mol Cryst Liq Cryst. 2013;581(1):83–8. https://doi.org/10.1080/15421406.2013.808557.
    [38] Gubbelmans E, Verbiest T, Van Beylen M, Persoons A, Samyn C. Chromophore-functionalised polymides with high-poling stabilities of the nonlinear optical effect at elevated temperature. Polymer. 2002;43(5):1581–5. https://doi.org/10.1016/S0032-3861(01)00678-4.
    [39] Chen TA, Jen AK, Cai Y. Two-step synthesis of side-chain aromatic polyimides for second-order nonlinear optics. Macromolecules. 1996;29(2):535–9. https://doi.org/10.1021/ma9512566.
    [40] Yu D, Gharavi A, Yu L. A generic approach to functionalizing aromatic polyimides for second-order nonlinear optics. Macromolecules. 1995;28(3):784–6. https://doi.org/10.1021/ma00107a017.
    [41] Samyn C, Van den Broeck K, Verbiest T, Persoons A. (1999) synthesis and nonlinear optical properties of high glass transition polyimides and poly (maleimide-styrene)s. organic thin films for photonic applications. Santa Clara: Optical Society of America; 1999. 3.0.CO;2-K">https://doi.org/10.1002/(SICI)1521-3935(19991201)200:12<2629::AID-MACP2629>3.0.CO;2-K
    [42] Van den Broeck K, Verbiest T, Van Beylen M, Persoons A, Samyn C. Synthesis and nonlinear optical properties of high glass transition polyimides. Macromol Chem Phys. 1999;200(12):2629–35 3.0.CO;2-K">https://doi.org/10.1002/(SICI)1521-3935(19991201)200:12<2629::AID-MACP2629>3.0.CO;2-K.
    [43] Van den Broeck K, Verbiest T, Degryse J, Van Beylen M, Persoons A, Samyn C. High glass transition chromophore functionalised polyimides for second-order nonlinear optical applications. Polymer. 2001;42(8):3315–22. https://doi.org/10.1016/S0032-3861(00)00761-8.
    [44] Qin A, Yang Z, Bai F, Ye C. Design and synthesis of a thermally stable second-order nonlinear optical chromophore and its poled polymers. Polym Chem. 2003;41(18):2846–53. https://doi.org/10.1002/pola.10871.
    [45] Tsai HC, Kuo WJ, Hsiue GH. Highly thermal stable main-chain nonlinear optical polyimide based on two-dimensional carbazole chromophores. Macromol Rapid Comm. 2005;26(12):986–91. https://doi.org/10.1002/marc.200500111.
    [46] Deng G, Bo S, Zhou T, Huang H, Wu J, Liu J, et al. Facile synthesis and electro-optic activities of new polycarbonates containing tricyanofuran-based nonlinear optical chromophores. Macromol Rapid Comm. 2013;51(13):2841–9. https://doi.org/10.1002/pola.26673.
    [47] Singer KD, Kuzyk MG, Holland WR, Sohn JE, Lalama SJ, Comizzoli RB, et al. Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films. Appl Phys Lett. 1988;53(19):1800–2. https://doi.org/10.1063/1.99785.
    [48] Luo J, Haller M, Li HX, Kim TD, Jen AK. Highly efficient and thermally stable electro-optic polymer from a smartly controlled crosslinking process. Adv Mater. 2003;15(19):1635–8. https://doi.org/10.1002/adma.200305202.
    [49] Saadeh H, Wang L, Yu L. A new synthetic approach to novel polymers exhibiting large electrooptic coefficients and high thermal stability. Macromolecules. 2000;33(5):1570–6. https://doi.org/10.1021/ma991097g.
    [50] Jen AK, Wu X, Ma H. High-performance polyquinolines with pendent high-temperature chromophores for second-order nonlinear optics. Chem Mater. 1998;10(2):471–3. https://doi.org/10.1021/cm970739g.
    [51] Chen TA, Jen AK, Cai Y. A novel class of nonlinear optical side-chain polymer: Polyquinolines with large second-order nonlinearity and thermal stability. Chem Mater. 1996;8(3):607–9. https://doi.org/10.1021/cm9505916.
    [52] Lee ES, Kim SM, Yi MH, Ka JW, Oh MC. Coplanar electrode polymer modulators incorporating fluorinated polyimide backbone electro-optic polymer. Photonics-Basel. 2020;7(4):100. https://doi.org/10.3390/photonics7040100.
    [53] Tsutsumi N, Matsumoto O, Sakai W, Kiyotsukuri T. Nonlinear optical polymers. 2. Novel nlo linear polyurethane with dipole moments aligned transverse to the main backbone. Macromolecules. 1996;29(2):592–7. https://doi.org/10.1021/ma951077o.
    [54] Tsutsumi N, Morishima M, Sakai W. Nonlinear optical (NLO) polymers. 3. Nlo polyimide with dipole moments aligned transverse to the imide linkage. Macromolecules. 1998;31(22):7764–9. https://doi.org/10.1021/ma9803436.
    [55] Tirelli N, Altomare A, Solaro R, Ciardelli F, Follonier S, Bosshard C, et al. Structure–activity relationship of new nlo organic materials based on push–pull azodyes: 4. Side chain polymers. Polymer. 2000;41(2):415–21. https://doi.org/10.1016/S0032-3861(99)00202-5.
    [56] Luh TY, Chen RM, Hwu TY, Basu S, Shiau CW, Lin WY, et al. Rational design of polymers for optoelectronic interests pure and applied chemistry. Pure Appl Chem. 2001;73(2):243–6. https://doi.org/10.1351/pac200173020243.
    [57] Campbell D, Dix LR, Rostron P. Synthesis of poly vinyl ethers with pendant non-linear optical azo dyes. Eur Polym J. 1993;29(2):249–53. https://doi.org/10.1016/0014-3057(93)90091-S.
    [58] Ye C, Marks TJ, Yang J, Wong GK. Synthesis of molecular arrays with nonlinear optical properties: second-harmonic generation by covalently functionalized glassy polymers. Macromolecules. 1987;20(9):2322–4. https://doi.org/10.1021/ma00175a051.
    [59] Hayden LM, Sauter GF, Ore FR, Pasillas PL, Hoover JM, Lindsay GA, et al. Second-order nonlinear optical measurements in guest-host and side-chain polymers. J Appl Phys. 1990;68(2):456–65. https://doi.org/10.1063/1.346815.
    [60] Moon KJ, Shim HK, Lee KS, Zieba J, Prasad PN. Synthesis, characterization, and second-order optical nonlinearity of a polyurethane structure functionalized with a hemicyanine dye. Macromolecules. 1996;29(3):861–7. https://doi.org/10.1021/ma950275c.
    [61] Noël C, Gangadhara CKC, Large M, Reyx D, Kajzar F. Synthesis and characterization of polymers containing 4-cyanobiphenyl-based side groups for nonlinear optical applications, 3. Poly(p-chloromethylstyrene) derivatives. Macromol Chem Phys. 1997;198(5):1665–78. https://doi.org/10.1002/macp.1997.021980526.
    [62] Eckl M, Müller H, Strohriegl P, Beckmann S, Etzbach KH, Eich M, et al. Nonlinear optically active polymethacrylates with high glass transition temperatures. Macromol Chem Phys. 1995;196(1):315–25. https://doi.org/10.1002/macp.1995.021960122.
    [63] Strohriegl P, Mueller H, Nuyken O. Novel method for the preparation of polymethacrylates with nonlinear optically active side groups; 1993. https://doi.org/10.1117/12.139171.
    [64] Faccini M, Balakrishnan M, Torosantucci R, Driessen A, Reinhoudt DN, Verboom W. Facile attachment of nonlinear optical chromophores to polycarbonates. Macromolecules. 2008;41(22):8320–3. https://doi.org/10.1021/ma801875w.
    [65] Guo L, Guo Z, Li X. Design and preparation of side chain electro-optic polymeric materials based on novel organic second order nonlinear optical chromophores with double carboxyl groups. J Mater Sci-Mater El. 2018;29(3):2577–84. https://doi.org/10.1007/s10854-017-8181-y.
    [66] Miura H, Qiu F, Spring AM, Kashino T, Kikuchi T, Ozawa M, et al. High thermal stability 40 ghz electro-optic polymer modulators. Opt Express. 2017;25(23):28643–9. https://doi.org/10.1364/OE.25.028643.
    [67] Lu GW, Hong J, Qiu F, Spring AM, Kashino T, Oshima J, et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 gbit s−1 for energy-efficient datacentres and harsh-environment applications. Nat Commun. 2020;11(1):4224. https://doi.org/10.1038/s41467-020-18005-7.
    [68] Tian Y, He Y, Liu P, Zhang H, Zheng Q, Liu J, et al. Mild and in situ photo-crosslinking of anthracene-functionalized poly (aryl ether ketone) for enhancing temporal stability of organic NLO materials. J Mater Sci. 2021;56(9):5910–23. https://doi.org/10.1007/s10853-020-05594-3.
    [69] McElhanon JR, Wheeler DR. Thermally responsive dendrons and dendrimers based on reversible furan-maleimide diels−alder adducts. Org Lett. 2001;3(17):2681–3. https://doi.org/10.1021/ol0101281.
    [70] Gheneim R, Perez-Berumen C, Gandini A. Diels−alder reactions with novel polymeric dienes and dienophiles: synthesis of reversibly cross-linked elastomers. Macromolecules. 2002;35(19):7246–53. https://doi.org/10.1021/ma020343c.
    [71] Liu J, Wang L, Zhen Z, Liu X. Synthesis of novel polyarylate with elecrooptical chromophores as side chain as electro-optic host polymer. Colloid Polym Sci. 2012;290(12):1215–20. https://doi.org/10.1007/s00396-012-2695-x.
    [72] Kim TD, Luo J, Tian Y, Ka JW, Tucker NM, Haller M, et al. Diels−alder “click chemistry” for highly efficient electrooptic polymers. Macromolecules. 2006;39(5):1676–80. https://doi.org/10.1021/ma052087k.
    [73] Shi Z, Cui YZ, Huang S, Li Z, Luo J, Jen AK. Dipolar chromophore facilitated huisgen cross-linking reactions for highly efficient and thermally stable electrooptic polymers. ACS Macro Lett. 2012;1(7):793–6. https://doi.org/10.1021/mz300189p.
    [74] Cabanetos C, Bentoumi W, Silvestre V, Blart E, Pellegrin Y, Montembault V, et al. New cross-linkable polymers with huisgen reaction incorporating high μβ chromophores for second-order nonlinear optical applications. Chem Mater. 2012;24(6):1143–57. https://doi.org/10.1021/cm203590t.
    [75] Chen Z, Bo S, Qiu L, Zhen Z, Liu X. Synthesis and optical properties of a crosslinkable polymer system containing tricyanofuran-based chromophores with excellent electro-optic activity and thermal stability. Polym Int. 2012;61(9):1376–81. https://doi.org/10.1002/pi.4216.
    [76] Zhang C, Wang C, Yang J, Dalton LR, Sun G, Zhang H, et al. Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: role of cross-linking and monomer rigidity. Macromolecules. 2001;34(2):235–43. https://doi.org/10.1021/ma0011688.
  • 加载中
计量
  • 文章访问数:  104
  • HTML全文浏览量:  0
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 录用日期:  2021-06-18
  • 网络出版日期:  2021-07-28

目录

    /

    返回文章
    返回