留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Review: distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection

Xiaoyi Bao Zichao Zhou Yuan Wang

Xiaoyi Bao, Zichao Zhou, Yuan Wang. Review: distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection[J]. PhotoniX. doi: 10.1186/s43074-021-00038-w
引用本文: Xiaoyi Bao, Zichao Zhou, Yuan Wang. Review: distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection[J]. PhotoniX. doi: 10.1186/s43074-021-00038-w
Xiaoyi Bao, Zichao Zhou, Yuan Wang. Review: distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection[J]. PhotoniX. doi: 10.1186/s43074-021-00038-w
Citation: Xiaoyi Bao, Zichao Zhou, Yuan Wang. Review: distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection[J]. PhotoniX. doi: 10.1186/s43074-021-00038-w

Review: distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection

doi: 10.1186/s43074-021-00038-w
基金项目: 

Funding agency:Canada Research Chairs (950231352)

Natural Sciences and Engineering Research Council of Canada (RGPIN-2020-06302, STPGP 506628-17).

Review: distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection

Funds: 

Funding agency:Canada Research Chairs (950231352)

Natural Sciences and Engineering Research Council of Canada (RGPIN-2020-06302, STPGP 506628-17).

  • 摘要: Distributed time-domain Brillouin scattering fiber sensors have been widely used to measure the changes of the temperature and strain. The linear dependence of the temperature and strain on the Brillouin frequency shift enabled the distributed temperature and strain sensing based on mapping of the Brillouin gain spectrum. In addition, an acoustic wave can be detected by the four wave mixing (FWM) associated SBS process, in which phase matching condition is satisfied via up-down conversion of SBS process through birefringence matching before and after the conversion process. Brillouin scattering can be considered as the scattering of a pump wave from a moving grating (acoustic phonon) which induces a Doppler frequency shift in the resulting Stokes wave. The frequency shift is dependent on many factors including the velocity of sound in the scattering medium as well as the index of refraction. Such a process can be used to monitor the gain of random fiber laser based on SBS, the distributed acoustic wave reflect the distributed SBS gain for random lasing radiation, as well as the relative intensity noise inside the laser gain medium. In this review paper, the distributed time-domain sensing system based on Brillouin scattering including Brillouin optical time-domain reflectometry (BOTDR), Brillouin optical time-domain analysis (BOTDA), and FWM enhanced SBS for acoustic wave detection are introduced for their working principles and recent progress. The distributed Brillouin sensors based on specialty fibers for simultaneous temperature and strain measurement are summarized. Applications for the Brillouin scattering time-domain sensors are briefly discussed.
  • [1] Soto MA, Bolognini G, Di Pasquale F. Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification. Opt Express. 2011;19(5):4444–57. https://doi.org/10.1364/OE.19.004444.
    [2] Muanenda YS, Taki M, Nannipieri T, Signorini A, Oton CJ, Zaidi F, et al. Advanced coding techniques for long-range Raman/BOTDA distributed strain and temperature measurements. J Lightwave Technol. 2015;34(2):342–50.
    [3] Azad AK, Wang L, Guo N, Tam H-Y, Lu C. Signal processing using artificial neural network for BOTDA sensor system. Opt Express. 2016;24(6):6769–82. https://doi.org/10.1364/OE.24.006769.
    [4] Li W, Bao X, Li Y, Chen L. Differential pulse-width pair BOTDA for high spatial resolution sensing. Opt Express. 2008;16(26):21616–25. https://doi.org/10.1364/OE.16.021616.
    [5] Ba D, Wang B, Zhou D, Yin M, Dong Y, Li H, et al. Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA. Opt Express. 2016;24(9):9781–93. https://doi.org/10.1364/OE.24.009781.
    [6] Feng X, Zhou J, Sun C, Zhang X, Ansari F. Theoretical and experimental investigations into crack detection with BOTDR-distributed fiber optic sensors. J Eng Mech. 2013;139(12):1797–807. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000622.
    [7] Wang F, Zhan W, Zhang X, Lu Y. Improvement of spatial resolution for BOTDR by iterative subdivision method. J Lightwave Technol. 2013;31(23):3663–7. https://doi.org/10.1109/JLT.2013.2286193.
    [8] Ding Y, Xiao F, Zhu W, Xia T. Structural health monitoring of the scaffolding dismantling process of a long-span steel box girder viaduct based on BOTDA technology. Adv Civil Eng. 2019;2019:1–7. https://doi.org/10.1155/2019/5942717.
    [9] Li H, Liu Y, Cao J, Shu P. Investigation of the BOTDA Technology for Structural Condition Monitoring of Urban Tunnel: IOP Conference Series: Materials Science and Engineering: IOP Publishing; 2019. p. 042003.
    [10] Feng W-Q, Yin J-H, Borana L, Qin J-Q, Wu P-C, Yang J-L. A network theory for BOTDA measurement of deformations of geotechnical structures and error analysis. Measurement. 2019;146:618–27. https://doi.org/10.1016/j.measurement.2019.07.010.
    [11] Kurashima T, Horiguchi T, Tateda M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers. Opt Lett. 1990;15(18):1038–40. https://doi.org/10.1364/OL.15.001038.
    [12] Bao X, Chen L. Recent progress in distributed fiber optic sensors. Sensors. 2012;12(7):8601–39. https://doi.org/10.3390/s120708601.
    [13] Barrias A, Casas JR, Villalba S. A review of distributed optical fiber sensors for civil engineering applications. Sensors. 2016;16(5):748. https://doi.org/10.3390/s16050748.
    [14] Schenato L. A review of distributed fibre optic sensors for geo-hydrological applications. Appl Sci. 2017;7(9):896. https://doi.org/10.3390/app7090896.
    [15] Song KY, Zou W, He Z, Hotate K. All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber. Opt Lett. 2008;33(9):926–8. https://doi.org/10.1364/OL.33.000926.
    [16] Zhou Z, Chen L, Bao X. Dynamic detection of acoustic wave generated by polarization maintaining Brillouin random fiber laser. APL Photonics. 2020;5(9):096101. https://doi.org/10.1063/5.0015658.
    [17] Zhou Z, Wang H, Wang Y, Chen L, Bao X. Distributed static and dynamic detection of an acoustic wave in a Brillouin random fiber laser. Photonics Res. 2021;9(5):772–80. https://doi.org/10.1364/PRJ.415747.
    [18] Pang M, Bao X, Chen L, Qin Z, Lu Y, Lu P. Frequency stabilized coherent Brillouin random fiber laser: theory and experiments. Opt Express. 2013;21(22):27155–68. https://doi.org/10.1364/OE.21.027155.
    [19] Timoshenko S. Goodier JN, Theory of Elasticity. New York McGraw—Hil1. 1970;970(4):279–291.
    [20] Chu B. Laser Light Scattering (Second Edition), Academic Press. New York. 1991. https://doi.org/10.1016/B978-0-12-174551-6.50003-3..
    [21] Horiguchi T, Kurashima T, Tateda M. Tensile strain dependence of Brillouin frequency shift in silica optical fibers. IEEE Photon Technol Lett. 1989;1(5):107–8. https://doi.org/10.1109/68.34756.
    [22] Bao X, Webb DJ, Jackson DA. 32-km distributed temperature sensor based on Brillouin loss in an optical fiber. Opt Lett. 1993;18(18):1561–3. https://doi.org/10.1364/OL.18.001561.
    [23] Ravet F, Bao X, Zou L, Yu Q, Li Y, Kalosha V, et al. Accurate strain detection and localisation with the distributed Brillouin sensor based on phenomenological signal processing approach, Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure V: International Society for Optics and Photonics; 2006. p. 61761C.
    [24] Bao X, Chen L. Recent Progress in Brillouin scattering based Fiber sensors. J Sensors Rev. 2011;11(4):4152–87. https://doi.org/10.3390/s110404152.
    [25] Boyd RW. Nonlinear optics (Elsevier); 2008.
    [26] Chu R, Kanefsky M, Falk J. Numerical study of transient stimulated Brillouin scattering J. Appl Phys. 1992;71(10):4653–8. https://doi.org/10.1063/1.350654.
    [27] Scott AM. Efficient phase conjugation by Brillouin enhanced four wave mixing. Opt Commun. 1983;45(2):127–32. https://doi.org/10.1016/0030-4018(83)90060-3.
    [28] Skeldon MD, Narum P, Boyd RW. Non-frequency shifted, high-fidelity phase conjugation with aberrated pump waves by Brillouin-enhanced four-wave mixing. Opt Lett. 1987;12(5):343–5. https://doi.org/10.1364/OL.12.000343.
    [29] Zou W, He Z, Hotate K. Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber. Opt. Express. 2009;17:1248–55. https://doi.org/10.1364/OE.17.001248.
    [30] Dong Y, Chen L, Bao X. High-spatial-resolution time domain simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization maintaining fiber. IEEE Photon Technol Lett. 2010;22:1364–6. https://doi.org/10.3390/s18041176.
    [31] Zhou DP, Dong Y, Chen L, Bao X. Four-wave mixing analysis of Brillouin dynamic grating in a polarization maintaining fiber: theory and experiment. Opt Express. 2011;19(21):20785–98. https://doi.org/10.1364/OE.19.020785.
    [32] Zhou D, Chen L, Bao X. Polarization-decoupled four-wave mixing based on stimulated Brillouin scattering in a polarization-maintaining fiber. JOSA B. 2013;30(4):821–8. https://doi.org/10.1364/JOSAB.30.000821.
    [33] Thévenaz L, Le Floch S, Alasia D, Troger J. Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing. Meas Sci Technol. 2004;15(8):1519–24. https://doi.org/10.1088/0957-0233/15/8/015.
    [34] Lecoeuche V, Webb DJ, Pannell CN, Jackson DA. Transient response in high-resolution Brillouin based distributed sensing using probe pulses shorter than the acoustic relaxation time. Opt Lett. 2000;25(3):156–8. https://doi.org/10.1364/OL.25.000156.
    [35] Smith J, Brown A, DeMerchant M, Bao X. Pulse width dependance of the Brillouin loss spectrum. Opt Commun. 1999;168(5–6):393–8. https://doi.org/10.1016/S0030-4018(99)00366-1.
    [36] Horiguchi T, Shimizu K, Kurashima T, Tateda M, Koyamada Y. Development of a distributed sensing technique using Brillouin scattering. J Lightwave Technol. 1995;13(7):1296–302. https://doi.org/10.1109/50.400684.
    [37] Bao X, Brown A, DeMerchant M, Smith J. Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (< 10-ns) pulses. Opt Lett. 1999;24(8):510–2. https://doi.org/10.1364/OL.24.000510.
    [38] Afshar S, Ferrier GA, Bao X, Chen L. Effect of the finite extinction ratio of an electro-optic modulator on the performance of distributed probe-pump Brillouin sensorsystems. Opt Lett. 2003;28(16):1418–20. https://doi.org/10.1364/OL.28.001418.
    [39] Lecoeuche V, Webb DJ, Pannell CN, Jackson DA. 25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain. Opt Commun. 1999;168(1–4):95–102. https://doi.org/10.1016/S0030-4018(99)00358-2.
    [40] Brown AW, DeMerchant MD, Bao X, Bremner TW. Advances in distributed sensing using Brillouin scattering, Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials: International Society for Optics and Photonics; 1998. p. 294–300.
    [41] Brown AW, Colpitts BG, Brown K. Distributed sensor based on dark-pulse Brillouin scattering. IEEE Photon Technol Lett. 2005;17(7):1501–3. https://doi.org/10.1109/LPT.2005.848400.
    [42] Kishida K, Li C-H, Nishiguchi K. Pulse pre-pump method for cm-order spatial resolution of BOTDA, 17th International Conference on Optical Fibre Sensors: International Society for Optics and Photonics; 2005. p. 559–62.
    [43] Dominguez-Lopez A, Soto MA, Martin-Lopez S, Thevenaz L, Gonzalez-Herraez M. Resolving 1 million sensing points in an optimized differential time-domain Brillouin sensor. Opt Lett. 2017;42(10):1903–6. https://doi.org/10.1364/OL.42.001903.
    [44] Dong Y, Bao X, Li W. Differential Brillouin gain to improve the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor. Appl Opt. 2009;48(22):4297–301. https://doi.org/10.1364/AO.48.004297.
    [45] Foaleng SM, Tur M, Beugnot J-C, Thévenaz L. High spatial and spectral resolution long-range sensing using Brillouin echoes. J Lightwave Technol. 2010;28(20):2993–3003. https://doi.org/10.1109/JLT.2010.2073443.
    [46] Song KY, Chin S, Primerov N, Thévenaz L. Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating. J Lightwave Technol. 2010;28(14):2062–7. https://doi.org/10.1109/JLT.2010.2050763.
    [47] Zhou D-P, Peng W, Chen L, Bao X. Computational distributed fiber-optic sensing. Opt Express. 2019;27(12):17069–79. https://doi.org/10.1364/OE.27.017069.
    [48] Bao X, Zhang C, Li W, Eisa M, El-Gamal S, Benmokrane B. Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering. Smart Mater Struct. 2007;17(1):015003.
    [49] Bao X, Zhou D-P, Baker C, Chen L. Recent development in the distributed fiber optic acoustic and ultrasonic detection. J Lightwave Technol. 2016;35(16):3256–67.
    [50] Voskoboinik A, Yilmaz OF, Willner AW, Tur M. Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA). Opt Express. 2011;19(26):B842–B7. https://doi.org/10.1364/OE.19.00B842.
    [51] Bernini R, Minardo A, Zeni L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering. Opt Lett. 2009;34(17):2613–5. https://doi.org/10.1364/OL.34.002613.
    [52] Peled Y, Motil A, Yaron L, Tur M. Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile. Opt Express. 2011;19(21):19845–54. https://doi.org/10.1364/OE.19.019845.
    [53] Peled Y, Motil A, Tur M. Fast Brillouin optical time-domain analysis for dynamic sensing. Opt Express. 2012;20(8):8584–91. https://doi.org/10.1364/OE.20.008584.
    [54] Zhou D, Dong Y, Wang B, Pang C, Ba D, Zhang H, et al. Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement. Light Sci Appl. 2018;7(1):1–11.
    [55] Méndez A, Diatzikis E. “Fiber Optic Distributed Pressure Sensor Based on Brillouin Scattering,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Opt Soc Am, 2006), paper ThE46. https://doi.org/10.1364/OFS.2006.ThE46.
    [56] Gu H, Dong H, Zhang G, Hu W, Li Z. Simultaneous measurement of pressure and temperature using dual-path distributed Brillouin sensor. Appl Opt. 2015;54(11):3231–5. https://doi.org/10.1364/AO.54.003231.
    [57] Kim YH, Kwon H, Kim J, Song KY. Distributed measurement of hydrostatic pressure based on Brillouin dynamic grating in polarization maintaining fibers. Opt Express. 2016;24:21399–406.
    [58] Teng L, Zhang H, Dong Y, Zhou D, Jiang T, Gao W, et al. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings. Opt Lett. 2016;41(4413–4416):4413–6. https://doi.org/10.1364/OL.41.004413.
    [59] Kurashima T, Horiguchi T, Izumita H, Furukawa SI, Koyamada Y. Brillouin optical-fiber time-domain reflectometry. IEICE Trans Commun. 1993;76(4):382–90.
    [60] Maraval D, Gabet R, Jaouën Y, Lamour V. Slope-assisted BOTDR for pipeline vibration measurements. 2017 25th Optical Fiber Sensors Conference (OFS): IEEE; 2017. p. 1–4.
    [61] Li B, Luo L, Yu Y, Soga K, Yan J. Dynamic strain measurement using small gain stimulated Brillouin scattering in STFT-BOTDR. IEEE Sensors J. 2017;17(9):2718–24. https://doi.org/10.1109/JSEN.2017.2657119.
    [62] Dong Y, Bao X, Chen L. Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber. Opt Lett. 2009;34(17):2590–2. https://doi.org/10.1364/OL.34.002590.
    [63] Zou W, He Z, Hotate K. One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature. Opt Express. 2011;19(3):2363–70. https://doi.org/10.1364/OE.19.002363.
    [64] Song KY, Lee K, Lee SB. Tunable optical delays based on Brillouin dynamic grating in optical fibers. Opt Express. 2009;17(12):10344–9. https://doi.org/10.1364/OE.17.010344.
    [65] Dong Y, Chen L, Bao X. Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating. Opt Lett. 2010;35(2):193–5. https://doi.org/10.1364/OL.35.000193.
    [66] Zhang L, Xu Y, Gao S, Saxena B, Chen L, Bao X. Linearly polarized low-noise Brillouin random fiber laser. Opt Lett. 2017;42(4):739–42. https://doi.org/10.1364/OL.42.000739.
    [67] Pang M, Xie S, Bao X, Zhou D-P, Lu Y, Chen L. Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber. Opt Lett. 2012;37(15):3129–31. https://doi.org/10.1364/OL.37.003129.
    [68] Pang M, Bao X, Chen L. Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser. Opt Lett. 2013;38(11):1866–8. https://doi.org/10.1364/OL.38.001866.
    [69] Koyamada Y, Sakairi Y, Takeuchi N, Adachi S. Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry. IEEE Photonics Technol Lett. 2007;19(23):1910–2. https://doi.org/10.1109/LPT.2007.908651.
    [70] Elooz D, Antman Y, Levanon N, Zadok A. High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis. Opt Express. 2014;22(6):6453–63. https://doi.org/10.1364/OE.22.006453.
    [71] Krarup O, Baker C, Chen L, Bao X. Nonlinear resolution enhancement of an FBG based temperature sensor using the Kerr effect. Opt Express. 2020;28(26):39181–8. https://doi.org/10.1364/OE.411179.
    [72] Alem M, Soto MA, Thévenaz L. Analytical model and experimental verification of the critical power for modulation instability in optical fibers. Opt Express. 2015;23(23):29514–32. https://doi.org/10.1364/OE.23.029514.
    [73] Foaleng SM, Rodríguez-Barrios F, Martin-Lopez S, González-Herráez M, Thévenaz L. Detrimental effect of self-phase modulation on the performance of Brillouin distributed fiber sensors. Opt Lett. 2011;36(2):97–9. https://doi.org/10.1364/OL.36.000097.
    [74] Keaton GL, Leonardo MJ, Byer MW, Richard DJ. Stimulated Brillouin scattering of pulses in optical fibers. Opt Express. 2014;22(11):13351–65. https://doi.org/10.1364/OE.22.013351.
    [75] Thévenaz L, Mafang SF, Lin J. Effect of pulse depletion in a Brillouin optical time-domain analysis system. Opt Express. 2013;21(12):14017–35. https://doi.org/10.1364/OE.21.014017.
    [76] Dong Y, Chen L, Bao X. Time-division multiplexing-based BOTDA over 100km sensing length. Opt Lett. 2011;36(2):277–9. https://doi.org/10.1364/OL.36.000277.
    [77] Dong Y, Chen L, Bao X. Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs. J Lightwave Technol. 2011;30(8):1161–7.
    [78] Mompó JJ, Urricelqui J, Loayssa A. Brillouin optical time-domain analysis sensor with pump pulse amplification. Opt Express. 2016;24(12):12672–81. https://doi.org/10.1364/OE.24.012672.
    [79] Soto MA, Bolognini G, Di Pasquale F. Long-range simplex-coded BOTDA sensor over 120km distance employing optical preamplification. Opt Lett. 2011;36(2):232–4. https://doi.org/10.1364/OL.36.000232.
    [80] Angulo-Vinuesa X, Martin-Lopez S, Corredera P, Gonzalez-Herraez M. Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km. Opt Express. 2012;20(11):12147–54. https://doi.org/10.1364/OE.20.012147.
    [81] Urricelqui J, Sagues M, Loayssa A. Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses. Opt Express. 2015;23(23):30448–58. https://doi.org/10.1364/OE.23.030448.
    [82] Soto MA, Bolognini G, Di Pasquale F, Thévenaz L. Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range. Opt Lett. 2010;35(2):259–61. https://doi.org/10.1364/OL.35.000259.
    [83] Kim YH, Song KY. Tailored pump compensation for Brillouin optical time-domain analysis with distributed Brillouin amplification. Opt Express. 2017;25:14098–105.
    [84] Soto MA, Ramírez JA, Thévenaz L. Optimizing Image Denoising for Long-Range Brillouin Distributed Fiber Sensing. J Lightwave Technol. 2018;36(4):1168–77.
    [85] Dong Y, Wang B, Pang C, Zhou D, Ba D, Zhang H, et al. 150 km fast BOTDA based on the optical chirp chain probe wave and Brillouin loss scheme. Opt Lett. 2018;43(19):4679–82. https://doi.org/10.1364/OL.43.004679.
    [86] Voskoboinik A, Wang J, Shamee B, Nuccio SR, Zhang L, Chitgarha M, et al. SBS-based fiber optical sensing using frequency-domain simultaneous tone interrogation. J Lightwave Technol. 2011;29(11):1729–35. https://doi.org/10.1109/JLT.2011.2145411.
    [87] Fang J, Xu P, Dong Y, Shieh W. Single-shot distributed Brillouin optical time domain analyzer. Opt Express. 2017;25(13):15188–98. https://doi.org/10.1364/OE.25.015188.
    [88] Diaz S, Foaleng Mafang S, Lopez-Amo M, Thevenaz L. A high-performance optical time-domain Brillouin distributed Fiber sensor. IEEE Sensors J. 2008;8(7):1268–72. https://doi.org/10.1109/JSEN.2008.926963 91. Snoddy J, Li Y, Ravet F, Bao X. Stabilization of EOM bias voltage drift using lock-in amplifier and PID controller in distributed Brillouin sensor system. Applied optics. 2006.
    [89] Bao X, Webb DJ, Jackson DA. Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber. Opt Lett. 1994;19(2):141–3. https://doi.org/10.1364/OL.19.000141.
    [90] Fu Y, Wang Z, Zhu R, Xue N, Jiang J, Lu C, et al. Ultra-long-distance hybrid BOTDA/Ф-OTDR. Sensors. 2018;18(4):976.
    [91] Taki M, Signorini A, Oton CJ, Nannipieri T, di Pasquale F. Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding. Opt Lett. 2013;38(20):4162–5. https://doi.org/10.1364/OL.38.004162.
    [92] Afshar S, Kalosha V, Bao X, Chen L. Enhancement of stimulated Brillouin scattering of higher-order acoustic modes in single-mode optical fiber. Opt Lett. 2005;30(20):2685–7. https://doi.org/10.1364/OL.30.002685.
    [93] Lee C, Chiang P, Chi S. Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift. IEEE Photon Technol Lett. 2001;13(10):1094–6. https://doi.org/10.1109/68.950746.
    [94] Lu Y, Qin Z, Lu P, Zhou D, Chen L, Bao X. Distributed strain and temperature measurement by Brillouin beat spectrum. IEEE Photon Technol Lett. 2013;25(11):1050–3. https://doi.org/10.1109/LPT.2013.2254709.
    [95] Zou L, Bao X, Chen L. Brillouin scattering spectrum in photonic crystal fiber with a partially germanium-doped core. Opt Lett. 2003;28(21):2022–4. https://doi.org/10.1364/OL.28.002022.
    [96] Dainese P, Russell PSJ, Joly N, Knight J, Wiederhecker G, Fragnito HL, et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nat Phys. 2006;2(6):388–92. https://doi.org/10.1038/nphys315.
    [97] Zou L, Bao X, Afshar S, Chen L. Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber. Opt Lett. 2004;29(13):1485–7. https://doi.org/10.1364/OL.29.001485.
    [98] Li A, Wang Y, Fang J, Li M-J, Kim BY, Shieh W. Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination. Opt Lett. 2015;40(7):1488–91. https://doi.org/10.1364/OL.40.001488.
    [99] Pradhan P, Sengupta D, Wang L, Tremblay C, LaRochelle S, Ung B. The Brillouin gain of vector modes in a few-mode fiber. Sci Rep. 2017;7(1):1–7.
    [100] Xu Y, Ren M, Lu Y, Lu P, Bao X, Wang L, et al. Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber. Opt Lett. 2016;41(6):1138–41. https://doi.org/10.1364/OL.41.001138.
    [101] Wu H, Tang M, Wang M, Zhao C, Zhao Z, Wang R, et al. Few-mode optical fiber based simultaneously distributed curvature and temperature sensing. Opt Express. 2017;25(11):12722–32. https://doi.org/10.1364/OE.25.012722.
    [102] Bao X, Yu Q, Chen L. Simultaneous strain and temperature measurements with polarization-maintaining fibers and their error analysis by use of a distributed Brillouin loss system. Opt Lett. 2004;29(12):1342–4. https://doi.org/10.1364/OL.29.001342.
    [103] Zou W, He Z, Hotate K. Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber. IEEE Photon Technol Lett. 2010;22(8):526–8. https://doi.org/10.1109/LPT.2010.2041922.
    [104] Ding M, Mizuno Y, Nakamura K. Discriminative strain and temperature measurement using Brillouin scattering and fluorescence in erbium-doped optical fiber. Opt Express. 2014;22(20):24706–12. https://doi.org/10.1364/OE.22.024706.
    [105] Zaghloul MA, Wang M, Milione G, Li M-J, Li S, Huang Y-K, et al. Discrimination of temperature and strain in Brillouin optical time-domain analysis using a multicore optical fiber. Sensors. 2018;18(4):1176. https://doi.org/10.3390/s18041176.
    [106] Mizuno Y, Hayashi N, Tanaka H, Wada Y, Nakamura K. Brillouin scattering in multi-core optical fibers for sensing applications. Sci Rep. 2015;5(1):1–9.
    [107] Zhao Z, Soto MA, Tang M, Thévenaz L. Distributed shape sensing using Brillouin scattering in multi-core fibers. Opt Express. 2016;24(22):25211–23. https://doi.org/10.1364/OE.24.025211.
    [108] Wang H, Gao S, Baker C, Wang Y, Chen L, Bao X. Stimulated brillouin scattering in a tapered dual-core as 2 se 3-pmma fiber for simultaneous temperature and strain sensing. Opt Lett. 2020;45(12):3301–4. https://doi.org/10.1364/OL.391734.
    [109] Zhang C, Li W, Bao X, Chen L, Du M. Tensile strain dependence of the Brillouin gain spectrum in carbon/polyimide coated fibers. Opt Lett. 2007;32(17):2565–7. https://doi.org/10.1364/OL.32.002565.
    [110] Saxena B, Baker C, Bao X, Chen L. High birefringent brillouin frequency shifts in a single-mode as 2 se 3-pmma microtaper induced by a transverse load. Opt Lett. 2019;44(19):4789–92. https://doi.org/10.1364/OL.44.004789.
    [111] Bernini R, Fraldi M, Minardo A, Minutolo V, Carannante F, Nunziante L, et al. Identification of defects and strain error estimation for bending steel beams using time domain Brillouin distributed optical fiber sensors. Smart Mater Struct. 2006;15(2):612–22. https://doi.org/10.1088/0964-1726/15/2/045.
  • 加载中
计量
  • 文章访问数:  166
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 录用日期:  2021-07-15
  • 网络出版日期:  2021-07-30

目录

    /

    返回文章
    返回