留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay

Ziyihui Wang Yize Liu Chaoyang Gong Zhiyi Yuan Liang Shen Pengxiang Chang Kun Liu Tianhua Xu Junfeng Jiang Yu-Cheng Chen Tiegen Liu

Ziyihui Wang, Yize Liu, Chaoyang Gong, Zhiyi Yuan, Liang Shen, Pengxiang Chang, Kun Liu, Tianhua Xu, Junfeng Jiang, Yu-Cheng Chen, Tiegen Liu. Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay[J]. PhotoniX. doi: 10.1186/s43074-021-00041-1
引用本文: Ziyihui Wang, Yize Liu, Chaoyang Gong, Zhiyi Yuan, Liang Shen, Pengxiang Chang, Kun Liu, Tianhua Xu, Junfeng Jiang, Yu-Cheng Chen, Tiegen Liu. Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay[J]. PhotoniX. doi: 10.1186/s43074-021-00041-1
Ziyihui Wang, Yize Liu, Chaoyang Gong, Zhiyi Yuan, Liang Shen, Pengxiang Chang, Kun Liu, Tianhua Xu, Junfeng Jiang, Yu-Cheng Chen, Tiegen Liu. Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay[J]. PhotoniX. doi: 10.1186/s43074-021-00041-1
Citation: Ziyihui Wang, Yize Liu, Chaoyang Gong, Zhiyi Yuan, Liang Shen, Pengxiang Chang, Kun Liu, Tianhua Xu, Junfeng Jiang, Yu-Cheng Chen, Tiegen Liu. Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay[J]. PhotoniX. doi: 10.1186/s43074-021-00041-1

Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay

doi: 10.1186/s43074-021-00041-1
基金项目: 

Nation Science Foundation of China (Grant No. 61735011).

Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay

Funds: 

Nation Science Foundation of China (Grant No. 61735011).

  • 摘要: Protein assays show great importance in medical research and disease diagnoses. Liquid crystals (LCs), as a branch of sensitive materials, offer promising applicability in the field of biosensing. Herein, we developed an ultrasensitive biosensor for the detection of low-concentration protein molecules, employing LC-amplified optofluidic resonators. In this design, the orientation of LCs was disturbed by immobilized protein molecules through the reduction of the vertical anchoring force from the alignment layer. A biosensing platform based on the whispering-gallery mode (WGM) from the LC-amplified optofluidic resonator was developed and explored, in which the spectral wavelength shift was monitored as the sensing parameter. The microbubble structure provided a stable and reliable WGM resonator with a high Q factor for LCs. It is demonstrated that the wall thickness of the microbubble played a key role in enhancing the sensitivity of the LC-amplified WGM microcavity. It is also found that protein molecules coated on the internal surface of microbubble led to their interactions with laser beams and the orientation transition of LCs. Both effects amplified the target information and triggered a sensitive wavelength shift in WGM spectra. A detection limit of 1 fM for bovine serum albumin (BSA) was achieved to demonstrate the high-sensitivity of our sensing platform in protein assays. Compared to the detection using a conventional polarized optical microscope (POM), the sensitivity was improved by seven orders of magnitude. Furthermore, multiple types of proteins and specific biosensing were also investigated to verify the potential of LC-amplified optofluidic resonators in the biomolecular detection. Our studies indicate that LC-amplified optofluidic resonators offer a new solution for the ultrasensitive real-time biosensing and the characterization of biomolecular interactions.
      关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Etezadi D, Warner IV JB, Ruggeri FS, Dietler G, Lashuel HA, Altug H. Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection. Light Sci Appl. 2017;6(8):e17029. https://doi.org/10.1038/lsa.2017.29.
    [2] Mazouz Z, Mokni M, Fourati N, Zerrouki C, Barbault F, Seydou M, et al. Computational approach and electrochemical measurements for protein detection with MIP-based sensor. Biosens Bioelectron. 2020;151:111978. https://doi.org/10.1016/j.bios.2019.111978.
    [3] Aitekenov S, Gaipov A, Bukasov R. Review: detection and quantification of proteins in human urine. Talanta. 2021;223(Pt 1):121718. https://doi.org/10.1016/j.talanta.2020.121718.
    [4] Xu F, Zhu YC, Ma ZY, Zhao WW, Xu JJ, Chen HY. An ultrasensitive energy-transfer based photoelectrochemical protein biosensor. Chem Commun (Camb). 2016;52(14):3034–7. https://doi.org/10.1039/c5cc09963c.
    [5] Lin Q, Wen D, Wu J, Liu L, Wu W, Fang X, et al. Microfluidic immunoassays for sensitive and simultaneous detection of IgG/IgM/antigen of SARS-CoV-2 within 15 min. Anal Chem. 2020;92(14):9454–8. https://doi.org/10.1021/acs.analchem.0c01635.
    [6] Sadati M, Apik AI, Armas-Perez JC, Martinez-Gonzalez J, Hernandez-Ortiz JP, Abbott NL, et al. Liquid crystal enabled early stage detection of Beta amyloid formation on lipid monolayers. Adv Funct Mater. 2015;25(38):6050–60. https://doi.org/10.1002/adfm.201502830.
    [7] I-Hsin Lin DSM, Bertics PJ, Murphy CJ, de Pablo JJ, Abbott NL. <Endotoxin-induced structural transformations in liquid crystalline droplets.pdf>. Science. 2011;332(6035):1297–300. https://doi.org/10.1126/science.1195639.
    [8] Lin C-M, Wu P-C, Lee M-J, Lee W. Label-free protein quantitation by dielectric spectroscopy of dual-frequency liquid crystal. Sensors Actuators B Chem. 2019;282:158–63. https://doi.org/10.1016/j.snb.2018.11.047.
    [9] Su H, Shi S, Zhu M, Crump D, Letcher RJ, Giesy JP, et al. Persistent, bioaccumulative, and toxic properties of liquid crystal monomers and their detection in indoor residential dust. Proc Natl Acad Sci U S A. 2019;116(52):26450–8. https://doi.org/10.1073/pnas.1915322116.
    [10] Khan M, Park SY. Liquid crystal-based biosensor with backscattering interferometry: a quantitative approach. Biosens Bioelectron. 2017;87:976–83. https://doi.org/10.1016/j.bios.2016.09.065.
    [11] Wang Z, Xu T, Noel A, Chen Y-C, Liu T. Applications of liquid crystals in biosensing. Soft Matter. 2021;17(18):4675–702. https://doi.org/10.1039/d0sm02088e.
    [12] Yuan Z, Wang Z, Guan P, Wu X, Chen Y-C. Lasing-encoded microsensor driven by interfacial cavity resonance energy transfer. Adv Opt Mater. 2020;8:1901596. https://doi.org/10.1002/adom.201901596.
    [13] Jang J-H, Park S-Y. pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics. Sensors Actuators B Chem. 2017;241:636–43. https://doi.org/10.1016/j.snb.2016.10.118.
    [14] Tan H, Li X, Liao S, Yu R, Wu Z. Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation. Biosens Bioelectron. 2014;62:84–9. https://doi.org/10.1016/j.bios.2014.06.029.
    [15] Du J, et al. Detection of sulfadimethoxine using optical images of liquid crystals. Analyst. 2019;144(5):1761–7. https://doi.org/10.1039/c8an02049c.
    [16] Hsu WL, Lee MJ, Lee W. Electric-field-assisted signal amplification for label-free liquid-crystal-based detection of biomolecules. Biomed Opt Express. 2019;10:4987–98. https://doi.org/10.1364/BOE.10.004987.
    [17] Lin CH, Lee MJ, Lee W. Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals. Appl Phys Lett. 2016;109(9):093703.
    [18] Vahedi A, Kouhi M. Liquid crystal-based surface plasmon resonance biosensor. Plasmonics. 2019;15(1):61–71. https://doi.org/10.1007/s11468-019-01009-5.
    [19] Han GR, Song YJ, Jang CH. Label-free detection of viruses on a polymeric surface using liquid crystals. Colloids Surf B Biointerfaces. 2014;116:147–52. https://doi.org/10.1016/j.colsurfb.2013.12.037.
    [20] Wang Z, Zhang Y, Gong X, Yuan Z, Feng S, Xu T, et al. Bio-electrostatic sensitive droplet lasers for molecular detection. Nanoscale Adv. 2020;2(7):2713–9. https://doi.org/10.1039/d0na00107d.
    [21] Wang Y, Zhao L, Xu A, Wang L, Zhang L, Liu S, et al. Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor. Sensors Actuators B Chem. 2018;258:1090–8. https://doi.org/10.1016/j.snb.2017.12.012.
    [22] Duan R, Hao X, Li Y, Li H. Detection of acetylcholinesterase and its inhibitors by liquid crystal biosensor based on whispering gallery mode. Sensors Actuators B Chem. 2020;308:127672. https://doi.org/10.1016/j.snb.2020.127672.
    [23] Duan R, Li Y, Yuan Y, Liu L, Li H. Functionalised liquid crystal microfibers for hydrogen peroxide and catalase detection using whispering gallery mode. Liquid Crystals. 2020;47(11):1708–17.
    [24] Reynolds T, Riesen N, Meldrum A, Fan X, Hall JMM, Monro TM, François A. Fluorescent and lasing whispering gallery mode microresonators for sensing applications. Laser & Photonics Rev. 2017;11(2):1600265.
    [25] Jiang J, et al. Wall-thickness-controlled microbubble fabrication for WGM-based application. Appl Opt. 2020;59:5052–7. https://doi.org/10.1364/AO.391545.
    [26] Fan YJ, Chen FL, Liou JC, Huang YW, Chen CH, Hong ZY, Lin JD, Hsiao YC. Label-Free Multi-Microfluidic Immunoassays with Liquid Crystals on Polydimethylsiloxane Biosensing Chips. Polymers. 2020;12(2):395.
    [27] Zhang YN, Zhou T, Han B, Zhang A, Zhao Y. Optical bio-chemical sensors based on whispering gallery mode resonators. Nanoscale. 2018;10(29):13832–56. https://doi.org/10.1039/c8nr03709d.
    [28] Niu X, Luo D, Chen R, Wang F, Sun X, Dai H. Optical biosensor based on liquid crystal droplets for detection of cholic acid. Opt Commun. 2016;381:286–91. https://doi.org/10.1016/j.optcom.2016.07.016.
    [29] Wang Y, et al. Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application. Opt Exp. 2017;25:918–26. https://doi.org/10.1364/OE.25.000918.
    [30] Xue C-Y, Yang K-L. Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins. Langmuir. 2008;24(2):563–7. https://doi.org/10.1021/la7026626.
    [31] Humar M, Ravnik M, Pajk S, Muševič I. Electrically tunable liquid crystal optical microresonators. Nat Photonics. 2009;3(10):595–600. https://doi.org/10.1038/nphoton.2009.170.
    [32] Duan R, Li Y, Li H, Yang J. Detection of heavy metal ions using whispering gallery mode lasing in functionalized liquid crystal microdroplets. Biomed Opt Exp. 2019;10:6073–83. https://doi.org/10.1364/BOE.10.006073.
    [33] Mi G, Horvath C, Aktary M, Van V. Silicon microring refractometric sensor for atmospheric CO2 gas monitoring. Opt Express. 2016;24(2):1773–80.
    [34] Li H, Sun B, Yuan Y, Yang J. Guanidine derivative polymer coated microbubble resonator for high sensitivity detection of CO2 gas concentration. Opt Express. 2019;27(3):1991–2000.
    [35] Teraoka I, Arnold S, Vollmer F. Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium. J Opt Soc Am B. 2003;20(9):1937–46.
    [36] Vollmer F, Braun D, Libchaber A, Khoshsima M, Teraoka I, Arnold S. Protein detection by optical shift of a resonant microcavity. Appl Phys Lett. 2002;80(21):4057–9. https://doi.org/10.1063/1.1482797.
    [37] Arnold S, Khoshsima M, Teraoka I, Holler S, Vollmer F. Shift of whispering-gallery modes in microspheres by protein adsorption. Opt Lett. 2003;28(4):272–4.
    [38] Su J, Goldberg AF, Stoltz BM. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci Appl. 2016;5(1):e16001. https://doi.org/10.1038/lsa.2016.1.
    [39] Wu P-C, Karn A, Lee M-J, Lee W, Chen C-Y. Dye-liquid-crystal-based biosensing for quantitative protein assay. Dyes Pigments. 2018;150:73–8. https://doi.org/10.1016/j.dyepig.2017.11.013.
    [40] Lee MJ, Chang CH, Lee W. Label-free protein sensing by employing blue phase liquid crystal. Biomed Opt Expr. 2017;8:1712–20. https://doi.org/10.1364/BOE.8.001712.
    [41] Zhu H, White IM, Suter JD, Dale PS, Fan X. Analysis of biomolecule detection with optofluidic ring resonator sensors. Optics Exp. 2007;15:9139–46. https://doi.org/10.1364/OE.15.009139.
  • 加载中
计量
  • 文章访问数:  42
  • HTML全文浏览量:  1
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30
  • 录用日期:  2021-08-03
  • 网络出版日期:  2021-08-28

目录

    /

    返回文章
    返回