留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vacuum-ultraviolet (λ < 200 nm) photodetector array

Vacuum-ultraviolet (λ < 200 nm) photodetector array[J]. PhotoniX. doi: 10.1186/s43074-024-00120-z
引用本文: Vacuum-ultraviolet (λ < 200 nm) photodetector array[J]. PhotoniX. doi: 10.1186/s43074-024-00120-z
Siqi Zhu, Zhuogeng Lin, Zhao Wang, Lemin Jia, Naiji Zhang, Wei Zheng. Vacuum-ultraviolet (λ < 200 nm) photodetector array[J]. PhotoniX. doi: 10.1186/s43074-024-00120-z
Citation: Siqi Zhu, Zhuogeng Lin, Zhao Wang, Lemin Jia, Naiji Zhang, Wei Zheng. Vacuum-ultraviolet (λ < 200 nm) photodetector array[J]. PhotoniX. doi: 10.1186/s43074-024-00120-z

Vacuum-ultraviolet (λ < 200 nm) photodetector array

doi: 10.1186/s43074-024-00120-z

Vacuum-ultraviolet (λ < 200 nm) photodetector array

Funds: This work was financially supported by the National Natural Science Foundation of China (No. 62374186) and the Guangdong Natural Science Funds for Distinguished Young Scholars (No. 2021B1515020105).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Baker DN. How to cope with space weather. Science. 2002;297:1486–7.
    [2] Cane HV, Richardson IG. Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002. J Geophys Res. 2003;108:1156.
    [3] Temmer M. Space weather: the solar perspective. Living Rev Sol Phys. 2021;18:4.
    [4] Chamberlin PC, Woods TN, Eparvier FG. Flare Irradiance Spectral Model (FISM): flare component algorithms and results. Space Weather. 2008;6:S05001.
    [5] Jia L, Zheng W, Huang F. Vacuum-ultraviolet photodetectors. PhotoniX. 2020;1:22.
    [6] Zheng W, Lin R, Jia L, Huang F. Vacuum ultraviolet photovoltaic arrays. Photonics Res. 2018;7:98–102.
    [7] Benmoussa A, Dammasch IE, Hochedez JF, Schühle U, Koller S, Stockman Y, et al. Pre-flight calibration of LYRA, the solar VUV radiometer on board PROBA2. Astron Astrophys. 2009;508:1085–94.
    [8] Liu C, Eschen W, Loetgering L, Penagos Molina DS, Klas R, Iliou A, et al. Visualizing the ultra-structure of microorganisms using table-top extreme ultraviolet imaging. PhotoniX. 2023;4:6.
    [9] Li Z, Yan T, Fang X. Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nat Rev Mater. 2023;8:587–603.
    [10] Zheng W, Jia L, Huang F. Vacuum-ultraviolet photon detections. iScience. 2020;23:101145.
    [11] Yang J, Liu K, Chen X, Shen D. Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors. Prog Quantum Electron. 2022;83:100397.
    [12] Wu C, Wu F, Hu H, Wang S, Liu A, Guo D. Review of self-powered solar-blind photodetectors based on Ga2O3. Mater Today Phys. 2022;28:100883.
    [13] Cheng Y, Ye J, Lai L, Fang S, Guo D. Ambipolarity regulation of deep-UV photocurrent by controlling crystalline phases in Ga2O3 nanostructure for switchable logic applications. Adv Electron Mater. 2023;9:2201216.
    [14] He H, Wu C, Hu H, Wang S, Zhang F, Guo D, et al. Bandgap engineering and oxygen vacancy defect electroactivity inhibition in highly crystalline N-Alloyed Ga2O3 films through plasma-enhanced technology. J Phys Chem Lett. 2023;14:6444–50.
    [15] Lu YJ, Lin CN, Shan CX. Optoelectronic diamond: growth, properties, and photodetection applications. Adv Opt Mater. 2018;6:1800359.
    [16] Moon S, Kim J, Park J, Im S, Kim J, Hwang I, et al. Hexagonal boron nitride for next-generation photonics and electronics. Adv Mater. 2023;35:2204161.
    [17] Zhang H, Liang F, Song K, Xing C, Wang D, Yu H, et al. Demonstration of AlGaN/GaN-based ultraviolet phototransistor with a record high responsivity over 3.6 × 107 A/W. Appl Phys Lett. 2021;118:242105.
    [18] Wang D, Liu X, Kang Y, Wang X, Wu Y, Fang S, et al. Bidirectional photocurrent in p–n heterojunction nanowires. Nat Electron. 2021;4:645–52.
    [19] Wang D, Wu W, Fang S, Kang Y, Wang X, Hu W, et al. Observation of polarity-switchable photoconductivity in III-nitride/MoSx core-shell nanowires. Light Sci Appl. 2022;11:227.
    [20] Abid A, Bensalem R, Sealy B. The thermal stability of AlN. J Mater Sci. 1986;21:1301–4.
    [21] Dukenbayev K, Kozlovskiy A, Korolkov I, Zdorovets M. Investigation of radiation resistance of AlN ceramics. Vacuum. 2019;159:144–51.
    [22] Cheng Z, Koh YR, Mamun A, Shi J, Bai T, Huynh K, et al. Experimental observation of high intrinsic thermal conductivity of AlN. Phys Rev Mater. 2020;4:044602.
    [23] Yu R, Liu G, Wang G, Chen C, Xu M, Zhou H, et al. Ultrawide-bandgap semiconductor AlN crystals: growth and applications. J Mater Chem C. 2021;9:1852–73.
    [24] Benmoussa A, Soltani A, Gerbedoen JC, Saito T, Averin S, Gissot S, et al. Developments, characterization and proton irradiation damage tests of AlN detectors for VUV solar observations. Nucl Instrum Meth B. 2013;312:48–53.
    [25] Zheng W, Lin R, Zhang D, Jia L, Ji X, Huang F. Vacuum-ultraviolet photovoltaic detector with improved response speed and responsivity via heating annihilation trap state mechanism. Adv Opt Mater. 2018;6:1800697.
    [26] Li T, Wang F, Lin R, Xie W, Li Y, Zheng W, et al. In-plane enhanced epitaxy for step-flow AlN yielding a high-performance vacuum-ultraviolet photovoltaic detector. CrystEngComm. 2020;22:654–9.
    [27] Jia L, Zheng W, Lin R, Huang F. Ultra-high photovoltage (2.45 V) forming in graphene heterojunction via quasi-fermi level splitting enhanced effect. iScience. 2020;23:100818.
    [28] Jia L, Li T, Huang F, Zheng W. Extremely high photovoltage (3.16 V) achieved in vacuum-ultraviolet-oriented van der Waals Photovoltaics. ACS Photonics. 2022;9:2101–8.
    [29] Jia L, Huang F, Zheng W. Vacuum ultraviolet (120–200 nm) avalanche photodetectors. Adv Opt Mater. 2022;10:2102424.
    [30] Shen GH, Liu Z, Zhang ML, Guo YF, Tang WH. 16×16 solar-blind UV detector based on β-Ga2O3 sensors. IEEE Electron Device Lett. 2023;44:1140–43.
    [31] Zhang Z, Lin C, Yang X, Zang J, Li K, Lu Y, et al. Wafer-sized polycrystalline diamond photodetector planar arrays for solar-blind imaging. J Mater Chem C. 2022;10:6488–96.
    [32] Zhou S, Zhang H, Peng X, Liu H, Li H, Xiong Y, et al. Fully transparent and high-performance ε-Ga2O3 photodetector arrays for solar-blind imaging and deep-ultraviolet communication. Adv Photon Res. 2022;3:2200192.
    [33] Barberini L, Cadeddu S, Caria M. A new material for imaging in the UV: CVD Diamond. Nucl Instrum Meth A. 2001;460:127–37.
    [34] Li R, Dong Y, Qian F, Xie Y, Chen X, Zhang Q, et al. CsPbBr3/graphene nanowall artificial optoelectronic synapses for controllable perceptual learning. PhotoniX. 2023;4:4.
    [35] Razeghi M, Rogalski A. Semiconductor ultraviolet detectors. J Appl Phys. 1996;79:7433–73.
    [36] Haboeck U, Siegle H, Hoffmann A, Thomsen C. Lattice dynamics in GaN and AlN probed with first- and second-order Raman spectroscopy. Phys Status Solidi (c). 2003;6:1710–31.
    [37] Goñi AR, Siegle H, Syassen K, Thomsen C, Wagner JM. Effect of pressure on optical phonon modes and transverse effective charges in GaN and AlN. Phys Rev B. 2001;64:035205.
    [38] Romijn J, Vollebregt S, Middelburg LM, Mansouri BE, Van Zeijl HW, May A, et al. Integrated 64 pixel UV image sensor and readout in a silicon carbide CMOS technology. Microsyst Nanoeng. 2022;8:114.
    [39] Yan T, Ge J, Su L, Liu X, Fang X. Designing ordered organic small-molecule domains for ultraviolet detection and micrometer-sized flexible imaging. Nano Lett. 2023;23:8295–302.
    [40] Du Y, Yin S, Li Y, Chen J, Shi D, Guo E, et al. Liquid-metal-assisted synthesis of patterned GaN thin films for high-performance UV photodetectors array. Small Methods. 2024;8:2300175.
    [41] Zhou S, Zheng Q, Yu C, Huang Z, Chen L, Zhang H, et al. A high-performance ε-Ga2O3-based deep-ultraviolet photodetector array for solar-blind imaging. Materials. 2022;16:295.
    [42] Wu W, Han X, Li J, Wang X, Zhang Y, Huo Z, et al. Ultrathin and conformable lead halide perovskite photodetector arrays for potential application in retina-like vision sensing. Adv Mater. 2021;33:2006006.
    [43] Huang C, He X. Easily processable Cu2O/Si self-powered photodetector array for image sensing applications. ACS Appl Electron Mater. 2022;4:1335–42.
    [44] Wu W, Wang X, Han X, Yang Z, Gao G, Zhang Y, et al. Flexible photodetector arrays based on patterned CH3NH3PbI3-xClx perovskite film for real-time photosensing and imaging. Adv Mater. 2019;31:1805913.
    [45] Chen Y, Fan X, Zhang Z, Miao G, Jiang H, Song H. AlGaN-based self-powered solar-blind UV focal plane array imaging photosensors: material growth, device preparation, and functional verification. IEEE Sens. J. 2023;23:20536–42.
    [46] Li Z, Li Z, Huang H, Yao Y, Khan B, Zhu Y, et al. Green lithium: photoelectrochemical extraction. PhotoniX. 2023;4:23.
    [47] Wang B, Mu J. High-speed Si-Ge avalanche photodiodes. PhotoniX. 2022;3:8.
    [48] Cai Q, You H, Guo H, Wang J, Liu B, Xie Z, et al. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light Sci Appl. 2021;10:94.
  • 加载中
图(1)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-22
  • 录用日期:  2024-02-20
  • 修回日期:  2024-01-29
  • 网络出版日期:  2024-03-13

目录

    /

    返回文章
    返回