Ultrafast laser one-step construction of 3D micro-/nanostructures achieving high-performance zinc metal anodes
doi: 10.1186/s43074-024-00122-x
Ultrafast laser one-step construction of 3D micro-/nanostructures achieving high-performance zinc metal anodes
-
Abstract:
Aqueous zinc-ion batteries provide a most promising alternative to the existing lithium-ion batteries due to their high theoretical capacity, intrinsic safety, and low cost. However, commercializing aqueous zinc-ion batteries suffer from dendritic growth and side reactions on the surface of metallic zinc, resulting in poor reversibility. To overcome this critical challenge, here, we report a one-step ultrafast laser processing method for fabricating three-dimensional micro-/nanostructures on zinc anodes to optimize zinc nucleation and deposition processes. It is demonstrated that the three-dimensional micro-/nanostructure with increased specific surface area significantly reduces nucleation overpotential, as well as preferentially absorbs zinc ions to prevent dendritic protuberances and corrosion. As a result, the presence of three-dimensional micro-/nanostructures on the zinc metal delivers stable zinc plating/stripping beyond 2500 h (2 mA cm-2/1 mAh cm-2) in symmetric cells, a high Coulombic efficiency (99.71%) in half cells, and moreover an improved capacity retention (71.8%) is also observed in full cells. Equally intriguingly, the pouch cell with three-dimensional micro-/nanostructures can operate across various bending states without severely compromising performance. This work provides an effective strategy to construct ultrafine and high-precision three-dimensional micro-/nanostructures achieving high-performance zinc metal anodes and is expected to be of immediate benefit to other metal-based electrodes.
-
Key words:
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Ultrafast laser processing /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">One-step manufacturing /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Zinc metal anode /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Three-dimensional micro-/nanostructures /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Dendrite-free
-
[1] Han D, Wang Z, Lu H, Li H, Cui C, Zhang Z, Sun R, Geng C, Liang Q, Guo X, Mo Y, Zhi X, Kang F, Weng Z, Yang Q-H. A self-regulated interface toward highly reversible aqueous zinc batteries. Adv Energy Mater. 2022;12:2102982. [2] Gao Y, Yan Z, Gray J, He X, Wang D, Chen T, Huang Q, Li Y, Wang H, Kim S, Mallouk T, Wang D. Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat Mater. 2019;18:384–9. [3] Fang G, Zhou J, Pan A, Liang S. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018;3:2480–501. [4] Zhao C-X, Chen W-J, Zhao M, Song Y-W, Liu J-N, Li B-Q, Yuan T, Chen C-M, Zhang Q, Huang J-Q. Redox mediator assists electron transfer in lithium–sulfur batteries with sulfurized polyacrylonitrile cathodes. EcoMat. 2021;3:e12066. [5] Yu H, Zeng Y, Li N, Luan D, Yu L, Lou X. Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes. Sci Adv. 2022;8:eabm5766. [6] Yin Y-C, Yang J-T, Luo J-D, Lu G-X, Huang Z, Wang J-P, Li P, Li F, Wu Y-C, Tian T, Meng Y-F, Mo H-S, Song Y-H, Yang J-N, Feng L-Z, Ma T, Wen W, Gong K, Wang L-J, Ju H-X, Xiao Y, Li Z, Tao X, Yao H-B. A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature. 2023;616:77–83. [7] Wang F, Zhang J, Lu H, Zhu H, Chen Z, Wang L, Yu J, You C, Li W, Song J, Weng Z, Yang C, Yang Q-H. Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte. Nat Commun. 2023;14:4211. [8] Xie C, Li Y, Wang Q, Sun D, Tang Y, Wang H. Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review. Carbon Energy. 2020;2:1–21. [9] Li C, Xie X, Liang S, Zhou J. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ Mater. 2020;35:19–46. [10] Liu B, Wei C, Zhu Z, Fang Y, Bian Z, Lei X, Zhou Y, Tang C, Qian Y. Regulating Surface Reaction Kinetics through Ligand Field Effects for Fast and Reversible Aqueous Zinc Batteries. Angew Chem Int Ed. 2022;61:e202212780. [11] Lv Y, Zhao M, Du Y, Kang Y, Xiao Y, Chen S. Engineering self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ Sci. 2022;5:4748–60. [12] Ren H, Li S, Wang B, Zhang Y, Wang T, Lv Q, Zhang X, Wang L, Han X, Jin F, Bao C, Yan P, Zhang N, Wang D, Cheng T, Liu H-K, Dou S. Molecular crowding effect mimicking cold resistant plant to stabilize zinc anode with wider service temperature range. Adv Mater. 2022;35:2208237. [13] Kwon M, Lee J, Ko S, Lim G, Yu S-H, Hong J, Lee M. timulating Cu-Zn Alloying for Compact Zn Metal Growth towards High Energy Aqueous Batteries and Hybrid Supercapacitors. Energy Environ Sci. 2022;15:2889–99. [14] Tian H, Feng G, Qi W, Li Z, Zhang W, Lucero M, Feng Z, Wang Z, Zhang Y, Zhen C, Gu M, Shan X, Yang Y. Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes. Nat Commun. 2022;13:7922. [15] Meng H, Ran Q, Dai T, Shi H, Zeng S, Zhu Y, Wen Z, Zhang W, Lang X, Zheng W, Jiang Q. Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 2022;14:128. [16] Gan H, Wu J, Li R, Huang B, Liu H. Ultra-stable and deeply rechargeable zinc metal anode enabled by a multifunctional protective layer. Energy Storage Mater. 2022;47:602–10. [17] Zhao Z, Wang R, Peng C, Chen W, Wu T, Hu B, Weng W, Yao Y, Zeng J, Chen Z, Liu P, Liu Y, Li G, Guo J, Lu H, Guo Z. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat Commun. 2021;12:6606. [18] Wang X, Meng J, Lin X, Yang Y, Shuang Z, Yaping W, Pan A. Stable zinc metal anodes with textured crystal faces and functional zinc compound coatings. Adv Funct Mater. 2021;31:2106114. [19] Zhang Z, Yang X, Li P, Wang Y, Zhao X, Safaei J, Tian H, Zhou D, Li B, Kang F, Wang G. Biomimetic dendrite-free multivalent metal batteries. Adv Mater. 2022;34:2206970. [20] Sun PX, Cao Z, Zeng YX, Xie WW, Li NW, Luan D, Yang S, Yu L, Lou XW. High Zinc Utilization Aqueous Zinc Ion Batteries Enabled by 3D Printed Graphene Arrays. Angew Chem Int Ed. 2022;61:e202115649. [21] Ruan J, Ma D, Ouyang K, Shen S, Yang M, Wang Y, Zhao J, Mi H, Zhang P. 3D artificial array interface engineering enabling dendrite-free stable ZN metal anode. Nano-Micro Lett. 2023;15:37. [22] Kim J, Liu G, Shim G, Kim H, Lee J. Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Adv Funct Mater. 2020;30:2004210. [23] Guo N, Huo W, Dong X, Zhefei S, Lu Y, Wu X, Dai L, Wang L, Lin H, Liu H, Liang H, He Z, Zhang Q. A review on 3D zinc anodes for zinc ion batteries. Small Methods. 2022;6:2200597. [24] Zheng J, Wu Y, Xie H, Zeng Y, Liu W, Gandi A, Zheng Q, Wang Z, Liang H. In situ alloying sites anchored on an amorphous aluminum nitride matrix for crystallographic reorientation of zinc deposits. ACS Nano. 2022;17:337–45. [25] Zhang Z, Said S, Smith K, Zhang Y, He G, Jervis R, Shearing P, Miller T, Brett DJL. Dendrite suppression by anode polishing in zinc-ion batteries. J Mater Chem A. 2021;9:15355–62. [26] Huang Z, Li H, Yang Z, Wang H, Ding J, Xu L, Tian Y, Mitlin D, Ding J, Hu W. Nanosecond laser lithography enables concave-convex zinc metal battery anodes with ultrahigh areal capacity. Energy Storage Mater. 2022;51:273–85. [27] Yang J, Li J, Zhao J, Liu K, Yang P, Fan H. Stable zinc anode enabled by zincophilic polyanionic hydrogel layer. Adv Mater. 2022;34:2202382. [28] Tan D, Sharafudeen KN, Yue Y, Qiu J. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications. Prog Mater Sci. 2016;76:154–228. [29] Zhang B, Wang Z, Tan D, Qiu J. Ultrafast laser-induced self-organized nanostructuring in transparent dielectrics: fundamentals and applications. PhotoniX. 2023;4:24. [30] Chen F, Qing Y, Jiang Z, Hou X. A review of femtosecond-laser-induced underwater superoleophobic surfaces. Adv Mater Interfaces. 2018;5:1701370. [31] Oh H, Lee J, Seo M, Baek I, Byun J, Lee M. Laser-induced dewetting of metal thin films for template-free plasmonic color printing. ACS Appl Mater Interfaces. 2018;10:38368–75. [32] Du L, Yin J, Zeng W, Pang S, Yi H. Fabrication of micro-nano structure Se-doped silicon via picosecond laser irradiation assisted by dopant film. Mater Lett. 2022;331:133463. [33] Liu Y, Ding Y, Xie J, Xu L, WhaJeong I, Yang L. One-Step Femtosecond Laser Irradiation of Single-Crystal Silicon: Evolution of Micro-Nano Structures and Damage Investigation. Mater Des. 2023;225:111443. [34] Yu Y, Zhou L, Cai Z, Luo S, Pan X, Zhou J, He W. Research on the mechanism of DD6 single crystal superalloy wear resistance improvement by femtosecond laser modification. Appl Surf Sci. 2021;577:151691. [35] Jin X, Song L, Dai C, Xiao Y, Han Y, Li X, Wang Y, Zhang J, Zhao Y, Zhang Z, Chen N, Jiang L, Qu L. A flexible aqueous zinc-iodine micro-battery with unprecedented energy density. Adv Mater. 2022;34:2109450. [36] Wang Y, Zhao Z, Zhong J, Wang T, Wang L, Xu H, Cao J, Li J, Zhang G, Fei H, Zhu J. Hierarchically micro/nanostructured current collectors induced by ultrafast femtosecond laser strategy for high-performance lithium-ion batteries. Energy Environ Mater. 2021;5:969–76. [37] Li Q, Wang Q, Li L, Yang L, Wang Y, Wang X, Fang H. Femtosecond laser-etched mxene microsupercapacitors with double-side configuration via arbitrary on- and through-substrate connections. Adv Energy Mater. 2020;10:2000470. [38] Liu H, Yixin Z, Moon K, Chen Y, Shi D, Chen X, Wong C. Ambient-air in situ fabrication of high-surface-area, superhydrophilic, and microporous few-layer activated graphene films by ultrafast ultraviolet laser for enhanced energy storage. Nano Energy. 2021;94:106902. [39] Yuan Y, Jiang L, Li X, Zuo P, Xu C, Tian M, Zhang X, Wang S, Lu B, Shao C, Zhao B, Zhang J, Qu L, Cui T. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat Commun. 2020;11:6185. [40] Yuan Y, Jiang L, Li X, Zuo P, Zhang X, Lian Y, Ma Y, Liang M, Zhao Y, Qu L. Ultrafast shaped laser induced synthesis of mxene quantum dots/graphene for transparent supercapacitors. Adv Mater. 2022;34:2110013. [41] Yan J, Deng S, Zhu D, Bai H, Zhu H. Self-powered SnSe photodetectors fabricated by ultrafast laser. Nano Energy. 2022;97:107188. [42] Chen J, Qiao X, Han X, Zhang J, Wu H, He Q, Chen Z, Shi L, Wang Y, Xie Y, Ma Y, Zhao J. Releasing plating-induced stress for highly reversible aqueous Zn metal anodes. Nano Energy. 2022;103:107814. [43] Cao Q, Pan Z, Gao Y, Pu J, Fu G, Cheng G, Guan C. Stable Imprinted Zincophilic Zn Anodes with High Capacity. Adv Funct Mater. 2022;32:2205771. [44] Tang B, Shan L, Liang S, Zhou J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci. 2019;12:3288–304. [45] Li Q, Chen A, Wang D, Pei Z, Zhi C. “Soft Shorts” hidden in zinc metal anode research. Joule. 2022;6:273–9. [46] Xie X, Liang S, Gao J, Guo S, Guo J, Wang C, Xu G, Wu X, Chen G, Zhou J. Manipulating the ion-transference kinetics and interface stability for high-performance zinc metal anode. Energy Environ Sci. 2020;13:503–10. [47] Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: Insights into materials design. Science. 2017;355:4998. [48] Laursen A, Varela A, Dionigi F, Fanchiu H, Miller C, Trinhammer O, Rossmeisl J, Dahl S. Electrochemical hydrogen evolution: Sabatier’s principle and the volcano plot. J Chem Educ. 2012;89:1595–9. [49] Hammer B, Nørskov J. Theoretical surface science and catalysis-calculations and concepts. Adv Catal. 2000;45:71–129. [50] Zhou J, Han Z, Wang X, Gai H, Chen Z, Guo T, Hou X, Xu L, Hu X, Huang M, Levchenko S. Discovery of quantitative electronic structure-OER activity relationship in metal-organic framework electrocatalysts using an integrated theoretical-experimental approach. Adv Funct Mater. 2021;31:2102066. [51] Liu X, Yang F, Xu W, Zeng Y, He J, Lu X. Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free zn anodes. Adv Sci. 2020;7:2002173. [52] M. Kim, Deepika, S. Lee, M. Kim, J. Ryu, K. Lee, L. Archer, W. Cho. Enabling reversible redox reactions in electrochemical cells using protected LiAl intermetallics as lithium metal anodes. Sci Adv. 2019;5:5587. [53] Pan H, Shao Y, Yan P, Cheng Y, Han KS, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller K, Liu J. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy. 2016;1:16039. [54] Mortensen J, Hansen L, Jacobsen K. A real-space grid implementation of the Projector Augmented Wave method. Phys Rev B. 2004;71:035109. [55] Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–8. [56] Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006;27:1787–99. [57] Chadi J. Special points for Brillouin-zone integrations. Phys Rev B. 1977;16:1746. [58] Jonsson H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys. 1999;111:7010–22. [59] Uberuaga B, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113:9901–4.