Multiplexing near- and far-field functionalities with high-efficiency bi-channel metasurfaces
-
Abstract:
Propagating waves and surface waves are two distinct types of light-transporting modes, the free control of which are both highly desired in integration photonics. However, previously realized devices are bulky in sizes, inefficient, and/or can only achieve one type of light-manipulation functionality with a single device. Here, we propose a generic approach to design bi-channel meta-devices, constructed by carefully selected meta-atoms possessing reflection phases of both structural-resonance and geometric origins, which can exhibit two distinct light-manipulation functionalities in near-field (NF) and far-field (FF) channels, respectively. After characterizing the scattering properties of basic meta-atoms and briefly stating the theoretical strategy, we design/fabricate three different meta-devices and experimentally characterize their bi-channel wave-control functionalities in the telecom regime. Our experiments show that the first two devices can multiplex the generations of NF and FF optical vortices with different topological charges, while the third one exhibits anomalous surface plasmon polariton focusing in the NF and hologram formation in the FF simultaneously. Our results expand the wave-control functionalities of metasurfaces to all wave-transporting channels, which may inspire many exciting applications in integration optics.
-
Key words:
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Bi-channel metasurfaces /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Near-field (NF) channels /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Far-field (FF) channels /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Integration photonics /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Structural-resonance /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Geometric phase /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Optical vortice /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Surface plasmon polariton /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Hologram
-
[1] Zhang JJ, Xiao SS, Wubs M, Mortensen NA. Surface plasmon wave adapter designed with transformation optics. ACS Nano. 2011;5:4359–64. [2] Sun SL, He Q, Xiao SY, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater. 2012;11:426–31. [3] Xu Q, Lang Y, Jiang X, Yuan X, Xu Y, Gu J, et al. Meta-optics inspired surface plasmon devices. Photonics Insights. 2023;29(1):R02. [4] Zhao M, Zhou Y, Li X, Cao W, He C, Yu B, et al. Applications of satellite remote sensing of nighttime light observations: advances, challenges, and perspectives. Remote Sens. 2019;11(17):1971. [5] Ma Q, Liu C, Xiao Q, Gu Z, Gao X, Li L, et al. Information metasurfaces and intelligent metasurfaces. Photonics Insights. 2022;1(1):R01. [6] Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics. 2013;7:354–62. [7] Khalighi MA, Uysal M. Survey on free space optical communication: a communication theory perspective. IEEE Communications Surveys & Tutorials. 2014;16:2231–58. [8] Wang J. Advances in communications using optical vortices. Photonics Research. 2016;4(5):B14-28. [9] Jia Q, Lyu W, Yan W, Tang W, Lu J, Qiu M. Optical manipulation: from fluid to solid domains. Photonics Insights. 2023;2(2):R05. [10] Li T, Chen C, Xiao X, Chen J, Hu S, Zhu S. Revolutionary meta-imaging: from superlens to metalens. Photonics Insights. 2023;2(1):R01. [11] Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science. 2005;308:534–7. [12] Wei F, Lu D, Shen H, Wan W, Ponsetto JL, Huang E, et al. Wide field super-resolution surface imaging through plasmonic structured illumination microscopy. Nano Lett. 2014;14:4634–9. [13] Willets KA, Wilson AJ, Sundaresan V, Joshi PB. Super-resolution imaging and plasmonics. Chem Rev. 2017;117:7538–82. [14] Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7:442–53. [15] Zhang S, Bao K, Halas NJ, Xu H, Nordlander P. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 2011;11:1657–63. [16] Zhao Y, Tong RJ, Xia F, Peng Y. Current status of optical fiber biosensor based on surface plasmon resonance. Biosens Bioelectron. 2019;142: 111505. [17] Yao J, Ou J-Y, Savinov V, Chen MK, Kuo HY, Zheludev NI, et al. Plasmonic anapole metamaterial for refractive index sensing. PhotoniX. 2022;3(1):23. [18] Citrin DS. Coherent excitation transport in metal-nanoparticle chains. Nano Lett. 2004;4:1561–5. [19] Fedotov VA, Rose M, Prosvirnin SL, Papasimakis N, Zheludev NI. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys Rev Lett. 2007;99: 147401. [20] Yin Y, Qiu T, Li J, Chu PK. Plasmonic nano-lasers. Nano Energy. 2012;1:25–41. [21] Hao JM, Yuan Y, Ran LX, Jiang T, Kong JA, Chan CT, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett. 2007;99(6):063908. [22] Hao JM, Ren QJ, An ZH, Huang XQ, Chen ZH, Qiu M, et al. Optical metamaterial for polarization control. Phys Rev A. 2009;2:023807. [23] Pors A, Nielsen MG, Della Valle G, Willatzen M, Albrektsen O, Bozhevolnyi SI. Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. Opt Lett. 2011;36:1626–8. [24] Sun WJ, He QO, Hao JM, Zhou L. A transparent metamaterial to manipulate electromagnetic wave polarizations. Opt Lett. 2011;36:927–9. [25] Yu NF, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 2012;12:6328–33. [26] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334:333–7. [27] Sun SL, Yang KY, Wang CM, Juan TK, Chen WT, Liao CY, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 2012;12:6223–9. [28] Ding F, Deshpande R, Meng C, Bozhevolnyi SI. Metasurface-enabled broadband beam splitters integrated with quarter-wave plate functionality. Nanoscale. 2020;12:14106–11. [29] Han W, Yang YF, Cheng W, Zhan QW. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt Express. 2013;21:20692–706. [30] Wang D, Liu F, Liu T, Sun S, He Q, Zhou L. Efficient generation of complex vectorial optical fields with metasurfaces. Light-Sci Appl. 2021;10:67. [31] Liu S, Cui TJ, Noor A, Tao Z, Zhang HC, Bai GD, et al. Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves. Light-Sci Appl. 2018;7(5):18008. [32] Sun WJ, He Q, Sun SL, Zhou L. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light-Sci Appl. 2016;5(1):e16003. [33] Liu Y, Zentgraf T, Bartal G, Zhang X. Transformational plasmon optics. Nano Lett. 2010;10:1991–7. [34] Epstein I, Arie A. Arbitrary bending plasmonic light waves. Phys Rev Lett. 2014;112: 023903. [35] Genevet P, Wintz D, Ambrosio A, She A, Blanchard R, Capasso F. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial. Nat Nanotechnol. 2015;10:804–9. [36] Chen J, Li T, Wang S, Zhu S. Multiplexed holograms by surface plasmon propagation and polarized scattering. Nano Lett. 2017;17:5051–5. [37] Li L, Yao K, Wang Z, Liu Y. Harnessing evanescent waves by bianisotropic metasurfaces. Laser Photonics Rev. 2020;14(12):1900244. [38] Chen WT, Yang KY, Wang CM, Huang YW, Sun G, Chiang ID, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 2014;14:225–30. [39] Pors A, Nielsen MG, Bernardin T, Weeber J-C, Bozhevolnyi SI. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light-Sci Appl. 2014;3: e197. [40] Huang C, Pan W, Ma X, Luo X. Multi-spectral metasurface for different functional control of reflection waves. Sci Rep. 2016;6:23291. [41] Chen L, Ren T, Zhao Y, Yu Q, Huang Z, Zhang K, et al. Polarization-independent wavefront manipulation of surface plasmons with plasmonic metasurfaces. Adv Opt Mater. 2020;8:2000868. [42] Xiong B, Liu Y, Xu Y, Deng L, Chen C-W, Wang J-N, et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science. 2023;379:294–9. [43] Lin J, Mueller JP, Wang Q, Yuan G, Antoniou N, Yuan XC, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science. 2013;340:331–4. [44] Huang L, Chen X, Bai B, Tan Q, Jin G, Zentgraf T, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light-Sci Appl. 2013;2: e70. [45] Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, et al. Helicity multiplexed broadband metasurface holograms. Nat Commun. 2015;6:8241. [46] Duan JW, Guo HJ, Dong SH, Cai T, Luo WJ, Liang ZZ, et al. High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Sci Rep. 2017;7(1):1354. [47] Wang D, Liu T, Zhou Y, Zheng X, Sun S, He Q, et al. High-efficiency metadevices for bifunctional generations of vectorial optical fields. Nanophotonics. 2020;10:685–95. [48] Wang Z, Li S, Zhang X, Feng X, Wang Q, Han J, et al. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz Metasurfaces. Adv Sci (Weinh). 2020;7:2000982. [49] Jin R, Tang L, Li J, Wang J, Wang Q, Liu Y, et al. Experimental demonstration of multidimensional and multifunctional metalenses based on photonic spin hall effect. ACS Photonics. 2020;7:512–8. [50] Deng L, Jin R, Xu Y, Liu Y. Structured light generation using angle-multiplexed metasurfaces. Adv Opt Mater. 2023;11(16):2300299. [51] Yao J, Lin R, Chen MK, Tsai DP. Integrated-resonant metadevices: a review Adv Photonics. 2023;5: 024001. [52] Jiang Q, Bao Y, Li J, Tian L, Cui T, Sun L, et al. Bi-channel near- and far-field optical vortex generator based on a single plasmonic metasurface. Photonics Res. 2020;8:986–94. [53] Berry MV. The adiabatic phase and Pancharatnam’s phase for polarized light. J Mod Opt. 1987;34:1401–7. [54] Daniel S, Saastamoinen K, Saastamoinen T, Vartiainen I, Friberg AT, Visser TD. Surface plasmons carry the Pancharatnam-Berry geometric phase. Phys Rev Lett. 2017;119(25):253901. [55] Guo Y, Pu M, Zhang F, Xu M, Li X, Ma X, et al. Classical and generalized geometric phase in electromagnetic metasurfaces. Photonics Insights. 2022;1(1):R03. [56] Qu C, Ma SJ, Hao JM, Qiu M, Li X, Xiao SY, et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys Rev Lett. 2015;115:6. [57] Gerchberg RW, Saxton WO. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik. 1972;35:237–46. -