留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multiplexing near- and far-field functionalities with high-efficiency bi-channel metasurfaces

Changhong Dai, Tong Liu, Dongyi Wang, Lei Zhou. Multiplexing near- and far-field functionalities with high-efficiency bi-channel metasurfaces[J]. PhotoniX. doi: 10.1186/s43074-024-00128-5
Citation: Changhong Dai, Tong Liu, Dongyi Wang, Lei Zhou. Multiplexing near- and far-field functionalities with high-efficiency bi-channel metasurfaces[J]. PhotoniX. doi: 10.1186/s43074-024-00128-5

doi: 10.1186/s43074-024-00128-5

Multiplexing near- and far-field functionalities with high-efficiency bi-channel metasurfaces

Funds: D. Wang acknowledges support from Prof. Guancong Ma, Department of Physics, Hong Kong Baptist University. L. Zhou acknowledges technical support from the Fudan Nanofabrication Laboratory for sample fabrication.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Zhang JJ, Xiao SS, Wubs M, Mortensen NA. Surface plasmon wave adapter designed with transformation optics. ACS Nano. 2011;5:4359–64.
    [2] Sun SL, He Q, Xiao SY, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater. 2012;11:426–31.
    [3] Xu Q, Lang Y, Jiang X, Yuan X, Xu Y, Gu J, et al. Meta-optics inspired surface plasmon devices. Photonics Insights. 2023;29(1):R02.
    [4] Zhao M, Zhou Y, Li X, Cao W, He C, Yu B, et al. Applications of satellite remote sensing of nighttime light observations: advances, challenges, and perspectives. Remote Sens. 2019;11(17):1971.
    [5] Ma Q, Liu C, Xiao Q, Gu Z, Gao X, Li L, et al. Information metasurfaces and intelligent metasurfaces. Photonics Insights. 2022;1(1):R01.
    [6] Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics. 2013;7:354–62.
    [7] Khalighi MA, Uysal M. Survey on free space optical communication: a communication theory perspective. IEEE Communications Surveys & Tutorials. 2014;16:2231–58.
    [8] Wang J. Advances in communications using optical vortices. Photonics Research. 2016;4(5):B14-28.
    [9] Jia Q, Lyu W, Yan W, Tang W, Lu J, Qiu M. Optical manipulation: from fluid to solid domains. Photonics Insights. 2023;2(2):R05.
    [10] Li T, Chen C, Xiao X, Chen J, Hu S, Zhu S. Revolutionary meta-imaging: from superlens to metalens. Photonics Insights. 2023;2(1):R01.
    [11] Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science. 2005;308:534–7.
    [12] Wei F, Lu D, Shen H, Wan W, Ponsetto JL, Huang E, et al. Wide field super-resolution surface imaging through plasmonic structured illumination microscopy. Nano Lett. 2014;14:4634–9.
    [13] Willets KA, Wilson AJ, Sundaresan V, Joshi PB. Super-resolution imaging and plasmonics. Chem Rev. 2017;117:7538–82.
    [14] Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7:442–53.
    [15] Zhang S, Bao K, Halas NJ, Xu H, Nordlander P. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 2011;11:1657–63.
    [16] Zhao Y, Tong RJ, Xia F, Peng Y. Current status of optical fiber biosensor based on surface plasmon resonance. Biosens Bioelectron. 2019;142: 111505.
    [17] Yao J, Ou J-Y, Savinov V, Chen MK, Kuo HY, Zheludev NI, et al. Plasmonic anapole metamaterial for refractive index sensing. PhotoniX. 2022;3(1):23.
    [18] Citrin DS. Coherent excitation transport in metal-nanoparticle chains. Nano Lett. 2004;4:1561–5.
    [19] Fedotov VA, Rose M, Prosvirnin SL, Papasimakis N, Zheludev NI. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys Rev Lett. 2007;99: 147401.
    [20] Yin Y, Qiu T, Li J, Chu PK. Plasmonic nano-lasers. Nano Energy. 2012;1:25–41.
    [21] Hao JM, Yuan Y, Ran LX, Jiang T, Kong JA, Chan CT, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett. 2007;99(6):063908.
    [22] Hao JM, Ren QJ, An ZH, Huang XQ, Chen ZH, Qiu M, et al. Optical metamaterial for polarization control. Phys Rev A. 2009;2:023807.
    [23] Pors A, Nielsen MG, Della Valle G, Willatzen M, Albrektsen O, Bozhevolnyi SI. Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. Opt Lett. 2011;36:1626–8.
    [24] Sun WJ, He QO, Hao JM, Zhou L. A transparent metamaterial to manipulate electromagnetic wave polarizations. Opt Lett. 2011;36:927–9.
    [25] Yu NF, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 2012;12:6328–33.
    [26] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334:333–7.
    [27] Sun SL, Yang KY, Wang CM, Juan TK, Chen WT, Liao CY, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 2012;12:6223–9.
    [28] Ding F, Deshpande R, Meng C, Bozhevolnyi SI. Metasurface-enabled broadband beam splitters integrated with quarter-wave plate functionality. Nanoscale. 2020;12:14106–11.
    [29] Han W, Yang YF, Cheng W, Zhan QW. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt Express. 2013;21:20692–706.
    [30] Wang D, Liu F, Liu T, Sun S, He Q, Zhou L. Efficient generation of complex vectorial optical fields with metasurfaces. Light-Sci Appl. 2021;10:67.
    [31] Liu S, Cui TJ, Noor A, Tao Z, Zhang HC, Bai GD, et al. Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves. Light-Sci Appl. 2018;7(5):18008.
    [32] Sun WJ, He Q, Sun SL, Zhou L. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light-Sci Appl. 2016;5(1):e16003.
    [33] Liu Y, Zentgraf T, Bartal G, Zhang X. Transformational plasmon optics. Nano Lett. 2010;10:1991–7.
    [34] Epstein I, Arie A. Arbitrary bending plasmonic light waves. Phys Rev Lett. 2014;112: 023903.
    [35] Genevet P, Wintz D, Ambrosio A, She A, Blanchard R, Capasso F. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial. Nat Nanotechnol. 2015;10:804–9.
    [36] Chen J, Li T, Wang S, Zhu S. Multiplexed holograms by surface plasmon propagation and polarized scattering. Nano Lett. 2017;17:5051–5.
    [37] Li L, Yao K, Wang Z, Liu Y. Harnessing evanescent waves by bianisotropic metasurfaces. Laser Photonics Rev. 2020;14(12):1900244.
    [38] Chen WT, Yang KY, Wang CM, Huang YW, Sun G, Chiang ID, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 2014;14:225–30.
    [39] Pors A, Nielsen MG, Bernardin T, Weeber J-C, Bozhevolnyi SI. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light-Sci Appl. 2014;3: e197.
    [40] Huang C, Pan W, Ma X, Luo X. Multi-spectral metasurface for different functional control of reflection waves. Sci Rep. 2016;6:23291.
    [41] Chen L, Ren T, Zhao Y, Yu Q, Huang Z, Zhang K, et al. Polarization-independent wavefront manipulation of surface plasmons with plasmonic metasurfaces. Adv Opt Mater. 2020;8:2000868.
    [42] Xiong B, Liu Y, Xu Y, Deng L, Chen C-W, Wang J-N, et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science. 2023;379:294–9.
    [43] Lin J, Mueller JP, Wang Q, Yuan G, Antoniou N, Yuan XC, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science. 2013;340:331–4.
    [44] Huang L, Chen X, Bai B, Tan Q, Jin G, Zentgraf T, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light-Sci Appl. 2013;2: e70.
    [45] Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, et al. Helicity multiplexed broadband metasurface holograms. Nat Commun. 2015;6:8241.
    [46] Duan JW, Guo HJ, Dong SH, Cai T, Luo WJ, Liang ZZ, et al. High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Sci Rep. 2017;7(1):1354.
    [47] Wang D, Liu T, Zhou Y, Zheng X, Sun S, He Q, et al. High-efficiency metadevices for bifunctional generations of vectorial optical fields. Nanophotonics. 2020;10:685–95.
    [48] Wang Z, Li S, Zhang X, Feng X, Wang Q, Han J, et al. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz Metasurfaces. Adv Sci (Weinh). 2020;7:2000982.
    [49] Jin R, Tang L, Li J, Wang J, Wang Q, Liu Y, et al. Experimental demonstration of multidimensional and multifunctional metalenses based on photonic spin hall effect. ACS Photonics. 2020;7:512–8.
    [50] Deng L, Jin R, Xu Y, Liu Y. Structured light generation using angle-multiplexed metasurfaces. Adv Opt Mater. 2023;11(16):2300299.
    [51] Yao J, Lin R, Chen MK, Tsai DP. Integrated-resonant metadevices: a review Adv Photonics. 2023;5: 024001.
    [52] Jiang Q, Bao Y, Li J, Tian L, Cui T, Sun L, et al. Bi-channel near- and far-field optical vortex generator based on a single plasmonic metasurface. Photonics Res. 2020;8:986–94.
    [53] Berry MV. The adiabatic phase and Pancharatnam’s phase for polarized light. J Mod Opt. 1987;34:1401–7.
    [54] Daniel S, Saastamoinen K, Saastamoinen T, Vartiainen I, Friberg AT, Visser TD. Surface plasmons carry the Pancharatnam-Berry geometric phase. Phys Rev Lett. 2017;119(25):253901.
    [55] Guo Y, Pu M, Zhang F, Xu M, Li X, Ma X, et al. Classical and generalized geometric phase in electromagnetic metasurfaces. Photonics Insights. 2022;1(1):R03.
    [56] Qu C, Ma SJ, Hao JM, Qiu M, Li X, Xiao SY, et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys Rev Lett. 2015;115:6.
    [57] Gerchberg RW, Saxton WO. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik. 1972;35:237–46.
  • 加载中
图(1)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  2
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-29
  • 录用日期:  2024-03-28
  • 修回日期:  2024-03-13
  • 网络出版日期:  2024-04-15

目录

    /

    返回文章
    返回