Ultra-wideband terahertz fingerprint enhancement sensing and inversion model supported by single-pixel reconfigurable graphene metasurface
-
Abstract:
The molecular fingerprint sensing technology based on metasurface has unique attraction in the biomedical field. However, in the terahertz (THz) band, existing metasurface designs based on multi-pixel or angle multiplexing usually require more analyte amount or possess a narrower tuning bandwidth. Here, we propose a novel single-pixel graphene metasurface. Based on the synchronous voltage tuning, this metasurface enables ultra-wideband (
\begin{document}$ \sim $\end{document} 1.5 THz) fingerprint enhancement sensing of trace analytes, including chiral optical isomers, with a limit of detection (LoD) ≤ 0.64 μg/mm2. The enhancement of the fingerprint signal (
$ \sim $17.4 dB) originates from the electromagnetically induced transparency (EIT) effect excited by the metasurface, and the ideal overlap between the light field constrained by single-layer graphene (SLG) and ultra-thin analyte. Meanwhile, due to the unique nonlinear enhancement mechanism in graphene tuning, the absorption envelope distortion is inevitable. To solve this problem, a universal fingerprint spectrum inversion model is developed for the first time, and the restoration of standard fingerprints reaches Rmax2 ≥ 0.99. In addition, the asynchronous voltage tuning of the metasurface provides an opportunity for realizing the dynamic reconfiguration of EIT resonance and the slow light modulation in the broadband range. This work builds a bridge for ultra-wideband THz fingerprint sensing of trace analytes, and has potential applications in active spatial light modulators, slow light devices and dynamic imaging equipments.
-
Key words:
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Graphene metasurface /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Chiral molecules /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Terahertz fingerprint /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Electromagnetically induced transparency /
- Engineering" /
- " data-track="click" data-track-action="view keyword" data-track-label="link">Spectrum inversion model
-
[1] Choi WJ, Yano K, Cha M, Colombari FM, Kim J-Y, Wang Y, Lee SH, Sun K, Kruger JM, de Moura AF, Kotov NA. Chiral phonons in microcrystals and nanofibrils of biomolecules. Nat Photonics. 2022;16(5):366–73. https://doi.org/10.1038/s41566-022-00969-1. [2] Lou J, Jiao YN, Yang RS, Huang YD, Xu X, Zhang L, Ma ZF, Yu Y, Peng WY, Yuan YF, Zhong Y, Li SY, Yan Y, Zhang FL, Liang JG, Du XH, Chang C, Qiu CW. Calibration-free, high-precision, and robust terahertz ultrafast metasurfaces for monitoring gastric cancers. Proceedings of the National Academy of Sciences of the United States of America. 2022;119(43). https://doi.org/10.1073/pnas.2209218119. [3] Peng Y, Shi C, Zhu Y, Gu M, Zhuang S. Terahertz spectroscopy in biomedical field: a review on signal-to-noise ratio improvement. PhotoniX. 2020;1(1). https://doi.org/10.1186/s43074-020-00011-z. [4] Zhang C, Yuan Y, Wu K, Wang Y, Zhu S, Shi J, Wang L, Li Q, Zuo X, Fan C, Chang C, Li J. Driving DNA origami assembly with a terahertz wave. Nano Lett. 2021;22(1):468–75. https://doi.org/10.1021/acs.nanolett.1c04369. [5] Ho L, Pepper M, Taday P. TERAHERTZ SPECTROSCOPY Signatures and fingerprints. Nat Photonics. 2008;2:541–3. https://doi.org/10.1038/nphoton.2008.174. [6] Niessen KA, Xu M, George DK, Chen MC, Ferré-D’Amaré AR, Snell EH, Cody V, Pace J, Schmidt M, Markelz AG. Protein and RNA dynamical fingerprinting. Nature Communications. 2019;10(1). https://doi.org/10.1038/s41467-019-08926-3. [7] Peng Y, Huang JL, Luo J, Yang ZF, Wang LP, Wu X, Zang XF, Yu C, Gu M, Hu Q, Zhang XC, Zhu YM, Zhuang SL. Three-step one-way model in terahertz biomedical detection. Photonix. 2021;2(1). https://doi.org/10.1186/s43074-021-00034-0. [8] Mayerhöfer TG, Popp J. Beer’s Law - Why Absorbance Depends (Almost) Linearly on Concentration. ChemPhysChem. 2019;20(4):511–5. https://doi.org/10.1002/cphc.201801073. [9] Yang X, Zhao X, Yang K, Liu YP, Liu Y, Fu WL, Luo Y. Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends Biotechnol. 2016;34(10):810–24. https://doi.org/10.1016/j.tibtech.2016.04.008. [10] Lee SH, Choe JH, Kim C, Bae S, Kim JS, Park QH, Seo M. Graphene assisted terahertz metamaterials for sensitive bio-sensing. Sensors and Actuators B-Chemical. 2020;310. https://doi.org/10.1016/j.snb.2020.127841. [11] Zhang XT, He LY, Gan X, Huang XC, Du YX, Zhai ZS, Li Z, Zheng YL, Chen XF, Cai YJ, Ao XY. Quasi-Bound States in the Continuum Enhanced Second-Harmonic Generation in Thin-Film Lithium Niobate. Laser & Photonics Reviews. 2022;16(9). https://doi.org/10.1002/lpor.202200031. [12] Kruk SS, Wang L, Sain B, Dong ZG, Yang J, Zentgraf T, Kivshar Y. Asymmetric parametric generation of images with nonlinear dielectric metasurfaces. Nat Photonics. 2022;16(8):561-+. https://doi.org/10.1038/s41566-022-01018-7. [13] Weber T, Kühner L, Sortino L, Ben Mhenni A, Wilson NP, Kühne J, Finley JJ, Maier SA, Tittl A. Intrinsic strong light-matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces. Nat Materials. 2023;22(8):970-+. https://doi.org/10.1038/s41563-023-01580-7. [14] Zhou CB, Huang LJ, Jin R, Xu L, Li GH, Rahmani M, Chen XS, Lu W, Miroshnichenko AE. Bound States in the Continuum in Asymmetric Dielectric Metasurfaces. Laser & Photonics Reviews. 2023;17(3). https://doi.org/10.1002/lpor.202200564. [15] Zang X, Yao B, Chen L, Xie J, Guo X, Balakin AV, Shkurinov AP, Zhuang S. Metasurfaces for manipulating terahertz waves. Light: Advanced Manufacturing. 2021;2(2). https://doi.org/10.37188/lam.2021.010. [16] Zhu Y, Zang X, Chi H, Zhou Y, Zhu Y, Zhuang S. Metasurfaces designed by a bidirectional deep neural network and iterative algorithm for generating quantitative field distributions. Light: Advanced Manufacturing. 2023;4(2). https://doi.org/10.37188/lam.2023.009. [17] Bai ZY, Liu YS, Kong RR, Nie TX, Sun Y, Li HL, Sun T, Pandey CD, Wang YN, Zhang HY, Song QL, Liu GZ, Kraft M, Zhao WS, Wu XJ, Wen LG. Near-field Terahertz Sensing of HeLa Cells and Pseudomonas Based on Monolithic Integrated Metamaterials with a Spintronic Terahertz Emitter. ACS Appl Mater Interfaces. 2020;12(32):35895–902. https://doi.org/10.1021/acsami.0c08543. [18] Zhang J, Mu N, Liu LH, Xie JH, Feng H, Yao JQ, Chen TN, Zhu WR. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency. Biosens Bioelectron. 2021;185:7. https://doi.org/10.1016/j.bios.2021.113241. [19] Jun SW, Ahn YH. Terahertz thermal curve analysis for label-free identification of pathogens. Nat Commun. 2022;13(1):8. https://doi.org/10.1038/s41467-022-31137-2. [20] Barth I, Conteduca D, Reardon C, Johnson S, Krauss TF. Common-path interferometric label-free protein sensing with resonant dielectric nanostructures. Light Sci Appl. 2020;9:96. https://doi.org/10.1038/s41377-020-0336-6. [21] Tang C, Yang J, Wang YD, Cheng J, Li XL, Chang C, Hu J, Lü JH. Integrating terahertz metamaterial and water nanodroplets for ultrasensitive detection of amyloid β aggregates in liquids. Sens Actuators B Chem. 2021;329:6. https://doi.org/10.1016/j.snb.2020.129113. [22] Wang RD, Xu L, Huang LJ, Zhang XB, Ruan H, Yang X, Lou J, Chang C, Du XH. Ultrasensitive Terahertz Biodetection Enabled by Quasi-BIC-Based Metasensors. Small. 2023;19(35):9. https://doi.org/10.1002/smll.202301165. [23] Shi WN, Fan F, Li SS, Zhang ZY, Liu HL, Wang XH, Chang SJ. Terahertz immunosensing assisted by functionalized Au NPs based on all-dielectric metasurface. Sens Actuators B Chem. 2022;362:10. https://doi.org/10.1016/j.snb.2022.131777. [24] Yang K, Li JN, de la Chapelle ML, Huang GR, Wang YX, Zhang JB, Xu DG, Yao JQ, Yang X, Fu WL. A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification. Biosens Bioelectron. 2021;175:7. https://doi.org/10.1016/j.bios.2020.112874. [25] Zhou RY, Wang C, Huang YX, Huang K, Wang YL, Xu WD, Xie LJ, Ying YB. Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures. Biosens Bioelectron. 2021;188:8. https://doi.org/10.1016/j.bios.2021.113336. [26] Sengupta R, Khand H, Sarusi G. Terahertz Impedance Spectroscopy of Biological Nanoparticles by a Resonant Metamaterial Chip for Breathalyzer-Based COVID-19 Prompt Tests. Acs Applied Nano Materials. 2022;5(4):5803–12. https://doi.org/10.1021/acsanm.2c00954. [27] Zhang CB, Xue TJ, Zhang J, Li ZF, Liu LH, Xie JH, Yao JQ, Wang GM, Ye XD, Zhu WR. Terahertz meta-biosensor based on high-Q electrical resonance enhanced by the interference of toroidal dipole. Biosens Bioelectron. 2022;214:9. https://doi.org/10.1016/j.bios.2022.114493. [28] Wang YL, Dai BH, Ma C, Zhang Q, Huang K, Luo X, Liu XJ, Ying YB, Xie LJ. Cross-wavelength hierarchical metamaterials enabled for trans-scale molecules detection simultaneously. Adv Sci. 2022;9(13):8. https://doi.org/10.1002/advs.202105447. [29] Lee SH, Lee D, Choi MH, Son JH, Seo M. Highly sensitive and selective detection of steroid hormones using terahertz molecule-specific sensors. Anal Chem. 2019;91(10):6844–9. https://doi.org/10.1021/acs.analchem.9b01066. [30] Ma ZF, Jiao YA, Zhang CB, Lou J, Zhao PY, Zhang B, Wang YJ, Yu Y, Sun W, Yan Y, Yang XP, Sun L, Wang RD, Chang C, Li XR, Du XH. Identification and quantitative detection of two pathogenic bacteria based on a terahertz metasensor. Nanoscale. 2023;15(2):515–21. https://doi.org/10.1039/d2nr05038b. [31] Huang CC, Liang LJ, Chang PY, Yao HY, Yan X, Zhang YG, Xie YY. Terahertz Liquid Biosensor Based on A Graphene Metasurface for Ultrasensitive Detection with A Quasi-Bound State in the Continuum. Adv Mater. 2023:10. https://doi.org/10.1002/adma.202310493. [32] Banks PA, Kleist EM, Ruggiero MT. Investigating the function and design of molecular materials through terahertz vibrational spectroscopy. Nat Rev Chem. 2023;7(7):480–95. https://doi.org/10.1038/s41570-023-00487-w. [33] Schlauderer S, Lange C, Baierl S, Ebnet T, Schmid CP, Valovcin DC, Zvezdin AK, Kimel AV, Mikhaylovskiy RV, Huber R. Temporal and spectral fingerprints of ultrafast all-coherent spin switching. Nature. 2019;569(7756):383-+. https://doi.org/10.1038/s41586-019-1174-7. [34] Yan ZY, Zhu LG, Meng K, Huang WX, Shi QW. THz medical imaging: from in vitro to in vivo. Trends Biotechnol. 2022;40(7):816–30. https://doi.org/10.1016/j.tibtech.2021.12.002. [35] Tittl A, Leitis A, Liu MK, Yesilkoy F, Choi DY, Neshev DN, Kivshar YS, Altug H. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science. 2018;360(6393):1105-+. https://doi.org/10.1126/science.aas9768. [36] Leitis A, Tittl A, Liu MK, Lee BH, Gu MB, Kivshar YS, Altug H. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci Adv. 2019;5(5):8. https://doi.org/10.1126/sciadv.aaw2871. [37] Yesilkoy F, Arvelo ER, Jahani Y, Liu MK, Tittl A, Cevher V, Kivshar Y, Altug H. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat Photonics. 2019;13(6):390-+. https://doi.org/10.1038/s41566-019-0394-6. [38] Xie YN, Liu XY, Li FJ, Zhu JF, Feng NX. Ultra-wideband enhancement on mid-infrared fingerprint sensing for 2D materials and analytes of monolayers by a metagrating. Nanophotonics. 2020;9(9):2927–35. https://doi.org/10.1515/nanoph-2020-0180. [39] Chen XE, Zhang Y, Cai GX, Zhuo JL, Lai KZ, Ye LF. All-dielectric metasurfaces with high Q-factor Fano resonances enabling multi-scenario sensing. Nanophotonics. 2022;11(20):4537–49. https://doi.org/10.1515/nanoph-2022-0394. [40] Sun L, Xu L, Wang JY, Jiao YN, Ma ZH, Ma ZF, Chang C, Yang X, Wang RD. A pixelated frequency-agile metasurface for broadband terahertz molecular fingerprint sensing. Nanoscale. 2022;14(27):9681–5. https://doi.org/10.1039/d2nr01561g. [41] Zhu JF, Jiang S, Xie YN, Li FJ, Du LH, Meng K, Zhu LG, Zhou J. Enhancing terahertz molecular fingerprint detection by a dielectric metagrating. Opt Lett. 2020;45(8):2335–8. https://doi.org/10.1364/ol.389045. [42] Tan TC, Srivastava YK, Ako RT, Wang WH, Bhaskaran M, Sriram S, Al-Naib I, Plum E, Singh R. Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing. Adv Mater. 2021;33(27):11. https://doi.org/10.1002/adma.202100836. [43] Hu YZ, Tong MY, Xu ZJ, Cheng XG, Jiang T. Bifunctional Spatiotemporal Metasurfaces for Incident Angle-Tunable and Ultrafast Optically Switchable Electromagnetically Induced Transparency. Small. 2021;17(21):10. https://doi.org/10.1002/smll.202006489. [44] Manjappa M, Pitchappa P, Singh N, Wang N, Zheludev NI, Lee C, Singh R. Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies. Nat Commun. 2018;9:10. https://doi.org/10.1038/s41467-018-06360-5. [45] Benea-Chelmus IC, Mason S, Meretska ML, Elder DL, Kazakov D, Shams-Ansari A, Dalton LR, Capasso F. Gigahertz free-space electro-optic modulators based on Mie resonances. Nat Commun. 2022;13(1):9. https://doi.org/10.1038/s41467-022-30451-z. [46] Yu P, Li JX, Liu N. Electrically tunable optical metasurfaces for dynamic polarization conversion. Nano Lett. 2021;21(15):6690–5. https://doi.org/10.1021/acs.nanolett.1c02318. [47] Fu XJ, Shi L, Yang J, Fu Y, Liu CX, Wu JW, Yang F, Bao L, Cui TJ. Flexible terahertz beam manipulations based on liquid-crystal-integrated programmable metasurfaces. ACS Appl Mater Interfaces. 2022;14(18):22287–94. https://doi.org/10.1021/acsami.2c02601. [48] Fu XJ, Yang F, Liu CX, Wu XJ, Cui TJ. Terahertz beam steering technologies: from phased arrays to field-programmable Metasurfaces. Advanced Optical Materials. 2020;8(3):22. https://doi.org/10.1002/adom.201900628. [49] Jiao YA, Lou J, Ma ZF, Cong LQ, Xu X, Zhang B, Li DC, Yu Y, Sun W, Yan Y, Hu SD, Liu BY, Huang YD, Sun L, Wang RD, Singh R, Fan YC, Chang C, Du XH. Photoactive terahertz metasurfaces for ultrafast switchable sensing of colorectal cells. Mater Horizons. 2022;9(12):10. https://doi.org/10.1039/d2mh00787h. [50] Tang PR, Li J, Du LH, Liu Q, Peng QX, Zhao JH, Zhu B, Li ZR, Zhu LG. Ultrasensitive specific terahertz sensor based on tunable plasmon induced transparency of a graphene micro-ribbon array structure. Opt Express. 2018;26(23):30655–66. https://doi.org/10.1364/oe.26.030655. [51] Li YY, Ferreyra P, Swan AK, Paiella R. Current-driven terahertz light emission from graphene plasmonic oscillations. Acs Photonics. 2019;6(10):2562-+. https://doi.org/10.1021/acsphotonics.9b01037. [52] Asgari M, Riccardi E, Balci O, De Fazio D, Shinde SM, Zhang JC, Mignuzzi S, Koppens FHL, Ferrari AC, Viti L, Vitiello MS. Chip-Scalable, Room-Temperature, Zero-Bias, Graphene-Based Terahertz Detectors with Nanosecond Response Time. ACS Nano. 2021;15(11):17966–76. https://doi.org/10.1021/acsnano.1c06432. [53] Rodrigo D, Limaj O, Janner D, Etezadi D, de Abajo FJG, Pruneri V, Altug H. Mid-infrared plasmonic biosensing with graphene. Science. 2015;349(6244):165–8. https://doi.org/10.1126/science.aab2051. [54] Koepfli SM, Baumann M, Koyaz Y, Gadola R, Güngör A, Keller K, Horst Y, Nashashibi S, Schwanninger R, Doderer M, Passerini E, Fedoryshyn Y, Leuthold J. Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz. Science. 2023;380(6650):1169–74. https://doi.org/10.1126/science.adg8017. [55] Wang ZF, Peng Y, Shi CJ, Wang LP, Chen XH, Wu WW, Wu X, Zhu YM, Zhang JC, Cheng GL, Zhuang SL. Qualitative and quantitative recognition of chiral drugs based on terahertz spectroscopy. Analyst. 2021;146(12):3888–98. https://doi.org/10.1039/d1an00500f. [56] Chen X, Fan WH, Song C. Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing. Carbon. 2018;133:416–22. https://doi.org/10.1016/j.carbon.2018.03.051. [57] Mou NL, Sun SL, Dong HX, Dong SH, He Q, Zhou L, Zhang L. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Opt Express. 2018;26(9):11728–36. https://doi.org/10.1364/oe.26.011728. [58] Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183–91. https://doi.org/10.1038/nmat1849. [59] Yan HG, Low T, Guinea F, Xia FN, Avouris P. Tunable phonon-induced transparency in bilayer graphene nanoribbons. Nano Lett. 2014;14(8):4581–6. https://doi.org/10.1021/nl501628x. [60] Castilla S, Terrés B, Autore M, Viti L, Li J, Nikitin AY, Vangelidis I, Watanabe K, Taniguchi T, Lidorikis E, Vitiello MS, Hillenbrand R, Tielrooij KJ, Koppen FHL. Fast and Sensitive Terahertz Detection using an Antenna-Integrated Graphene pn Junction. Nano Lett. 2019;19(5):2765–73. https://doi.org/10.1021/acs.nanolett.8b04171. [61] Yan HG, Low T, Zhu WJ, Wu YQ, Freitag M, Li XS, Guinea F, Avouris P, Xia FN. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics. 2013;7(5):394–9. https://doi.org/10.1038/nphoton.2013.57. [62] Sensale-Rodriguez B, Yan RS, Kelly MM, Fang T, Tahy K, Hwang WS, Jena D, Liu L, Xing HG. Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun. 2012;3:7. https://doi.org/10.1038/ncomms1787. [63] Mao Q, Wen QY, Tian W, Wen TL, Chen Z, Yang QH, Zhang HW. High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors. Opt Lett. 2014;39(19):5649–52. https://doi.org/10.1364/ol.39.005649. [64] Fang ZY, Thongrattanasiri S, Schlather A, Liu Z, Ma LL, Wang YM, Ajayan PM, Nordlander P, Halas NJ, de Abajo FJG. Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene. ACS Nano. 2013;7(3):2388–95. https://doi.org/10.1021/nn3055835. [65] Mousavi SH, Kholmanov I, Alici KB, Purtseladze D, Arju N, Tatar K, Fozdar DY, Suk JW, Hao YF, Khanikaev AB, Ruoff RS, Shvets G. Inductive Tuning of Fano-Resonant Metasurfaces Using Plasmonic Response of Graphene in the Mid-Infrared. Nano Lett. 2013;13(3):1111–7. https://doi.org/10.1021/nl304476b. [66] Wang L, An N, Gong S, Sheng X, Li YW, Yao BC, Yu C, He ZZ, Liu QB, Feng ZH, Otsuji T, Zhang YX. Ultrafast terahertz transparency boosting in graphene meta-cavities. Nanophotonics. 2022;11(21):4899–907. https://doi.org/10.1515/nanoph-2022-0511. [67] Kim J, Kuzyk MC, Han KW, Wang HL, Bahl G. Non-reciprocal Brillouin scattering induced transparency. Nat Phys. 2015;11(3):275–80. https://doi.org/10.1038/nphys3236. [68] Yang YM, Kravchenko II, Briggs DP, Valentine J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun. 2014;5:7. https://doi.org/10.1038/ncomms6753. [69] Chiam SY, Singh R, Rockstuhl C, Lederer F, Zhang WL, Bettiol AA. Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys Rev B. 2009;80(15):4. https://doi.org/10.1103/PhysRevB.80.153103. [70] Ling YH, Huang LR, Hong W, Liu TJ, Luan J, Liu WB, Lai JJ, Li HP. Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial. Nanoscale. 2018;10(41):19517–23. https://doi.org/10.1039/c8nr03564d. [71] Yahiaoui R, Burrow JA, Mekonen SM, Sarangan A, Mathews J, Agha I, Searles TA. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling. Phys Rev B. 2018;97(15):5. https://doi.org/10.1103/PhysRevB.97.155403. [72] Zhang Z, Gao J, Yang MS, Yan X, Lu YY, Wu L, Li JN, Wei DQ, Liu LH, Xie JH, Liang LJ, Yao JQ. Microfluidic integrated metamaterials for active terahertz photonics. Photonics Research. 2019;7(12):1400–6. https://doi.org/10.1364/prj.7.001400. [73] Yan X, Yang MS, Zhang Z, Liang LJ, Wei DQ, Wang M, Zhang MJ, Wang T, Liu LH, Xie JH, Yao JQ. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens Bioelectron. 2019;126:485–92. https://doi.org/10.1016/j.bios.2018.11.014. [74] Afra D, Baron B, Bonadonna G, Curran WJ, Green SB, Hildebrand J, Scott CB, Shapiro W, Thomas D, Trojanowski T, Urtasun R, Walker MD, Burdett S, Parmar MKB, Souhami RL, Stenning SP, Stewart LA, Glioma Meta-analysis Trialists G. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet. 2002;359(9311):1011–8. https://doi.org/10.1016/S0140-6736(02)08091-1. [75] Peng Y, Shi CJ, Xu MQ, Kou TY, Wu X, Song B, Ma HY, Guo SW, Liu LZ, Zhu YM. Qualitative and Quantitative Identification of Components in Mixture by Terahertz Spectroscopy. Ieee Transact Terahertz Sci Technol. 2018;8(6):696–701. https://doi.org/10.1109/tthz.2018.2867816. [76] Liu XY, Chen W, Ma YJ, Xie YN, Zhou J, Zhu LG, Xu YD, Zhu JF. Enhancing THz fingerprint detection on the planar surface of an inverted dielectric metagrating. Photonics Research. 2022;10(12):2836–45. https://doi.org/10.1364/prj.472114. [77] Xie YN, Liu XY, Zhou J, Zhang HF, Lin JY, Chen W, Zhu LG, Meng K, Liu QH, Zhu JF. Enhancing Trace Terahertz Fingerprint Sensing by the Lossy Silicon Metagrating With a Gold Mirror. IEEE Trans Microw Theory Tech. 2023:10. https://doi.org/10.1109/tmtt.2023.3314094. [78] Xie YN, Ma YJ, Liu XY, Khan SA, Chen W, Zhu LG, Zhu JF, Liu QH. Dual-Degree-of-Freedom Multiplexed Metasensor Based on Quasi-BICs for Boosting Broadband Trace Isomer Detection by THz Molecular Fingerprint. IEEE J Sel Top Quantum Electron. 2023;29(5):10. https://doi.org/10.1109/jstqe.2023.3236981. [79] Xiao SY, Wang T, Liu TT, Yan XC, Li Z, Xu C. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon. 2018;126:271–8. https://doi.org/10.1016/j.carbon.2017.10.035. [80] Chen MM, Xiao ZY, Lu XJ, Lv F, Zhou YJ. Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial. Carbon. 2020;159:273–82. https://doi.org/10.1016/j.carbon.2019.12.050. [81] Zeng BB, Huang ZQ, Singh A, Yao Y, Azad AK, Mohite AD, Taylor AJ, Smith DR, Chen HT. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light-Sci Appl. 2018;7:8. https://doi.org/10.1038/s41377-018-0055-4. [82] Shi WQ, Gu JQ, Zhang XY, Xu Q, Han JG, Yang QL, Cong LQ, Zhang WL. Terahertz bound states in the continuum with incident angle robustness induced by a dual period metagrating. Photonics Res. 2022;10(3):810–9. https://doi.org/10.1364/prj.440741. [83] Liu HZ, Guo C, Vampa G, Zhang JYL, Sarmiento T, Xiao M, Bucksbaum PH, Vuckovic J, Fan SH, Reis DA. Enhanced high-harmonic generation from an all-dielectric metasurface. Nat Phys. 2018;14(10):1006-+. https://doi.org/10.1038/s41567-018-0233-6. [84] Kim TT, Kim HD, Zhao R, Oh SS, Ha T, Chung DS, Lee YH, Min B, Zhang S. Electrically Tunable Slow Light Using Graphene Metamaterials. ACS Photonics. 2018;5(5):1800–7. https://doi.org/10.1021/acsphotonics.7b01551. [85] Hu YZ, Tong MY, Hu SY, He WB, Cheng XA, Jiang T. Spatiotemporal Lineshape Tailoring in BIC-Mediated Reconfigurable Metamaterials. Adv Func Mater. 2022;32(34):11. https://doi.org/10.1002/adfm.202203680.