留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Producing focused extreme ultraviolet vortex with Fermat‑spiral photon sieves

Junyong Zhang, Huaiyu Cui, Yuanyuan Liu, Xiuping Zhang, You Li, Dongdi Zhao, Yongpeng Zhao, Qiwen Zhan. Producing focused extreme ultraviolet vortex with Fermat‑spiral photon sieves[J]. PhotoniX. doi: 10.1186/s43074-024-00130-x
Citation: Junyong Zhang, Huaiyu Cui, Yuanyuan Liu, Xiuping Zhang, You Li, Dongdi Zhao, Yongpeng Zhao, Qiwen Zhan. Producing focused extreme ultraviolet vortex with Fermat‑spiral photon sieves[J]. PhotoniX. doi: 10.1186/s43074-024-00130-x

doi: 10.1186/s43074-024-00130-x

Producing focused extreme ultraviolet vortex with Fermat‑spiral photon sieves

Funds: Q.Z.acknowledges support by the Key Project of Westlake Institute for Optoelectronics (Grant No. 2023GD007).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Gardner DF, Tanksalvala M, Shanblatt ER, Zhang X, Galloway BR, Porter CL, Karl R Jr, Bevis C, Adams DE, Kapteyn HC, Murnane MM, Mancini GF. Subwavelength coherent imaging of periodic samples using a 13.5nm tabletop high-harmonic light source. Nat Photon. 2017;11(4):259–63.
    [2] Sivis M, Duwe M, Abel B, Ropers C. Extreme-ultraviolet-light generation in plasmonic nanostructures. Nat Phys. 2013;9(5):304–9.
    [3] Eschen W, Loetgering L, Schuster V, Klas R, Kirsche A, Berthold L, Steinert M, Pertsch T, Gross H, Krause M, Limpert J, Rothhardt J. Material-specific high-resolution table-top extreme ultraviolet microscopy. Light Sci Appl. 2022;11(1):1–10.
    [4] Benko C, Allison TK, Cingoz A, Hua L, Labaye F, Yost DC, Ye J. Extreme ultraviolet radiation with coherence time greater than 1s. Nat Photon. 2014;8(7):530–6.
    [5] Klas R, Demmler S, Tschernajew M, Hadrich S, Shamir Y, Tunnermann A, Rothhardt J, Limpert J. Table-Top Milliwatt-Class Extreme Ultraviolet High Harmonic Light Source. Optica. 2016;3(11):1167–70.
    [6] Allaria E, Appio R, Badano L, Barletta WA, Bassanese S, Biedron SG, et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat Photon. 2012;6(10):699–704.
    [7] Rocca JJ, Shlyaptsev V, Tomasel FG, Cortazar OD, Hartshorn D, Chilla JLA. Demonstration of a Discharge Pumped Table-Top Soft-X-Ray Laser. Phys Rev Lett. 1994;73(16):2192–5.
    [8] Zhao Y, Jiang S, Xie Y, Yang D, Teng S, Chen D, Wang Q. Demonstration of soft x-ray laser of Ne-like Ar at 69.8nm pumped by capillary discharge. Opt Lett. 2011;36(17):3458–60.
    [9] Géneaux R, Camper A, Auguste T, Gobert O, Caillat J, Taieb R, Ruchon T. Synthesis characterization of attosecond light vortices in the extreme ultraviolet. Nat Commun. 2016;7:12583–1–6.
    [10] Rego L, San Román J, Picón A, Plaja L, Hernández-García C. Nonperturbative Twist in the Generation of Extreme-Ultraviolet Vortex Beams. Phys Rev Lett. 2016;117(16):163202–1–6.
    [11] Dorney KM, Rego L, Brooks NJ, San Román J, Liao C-T, Ellis JL, Zusin D, Gentry C, Nguyen QL, Shaw JM, Picón A, Plaja L, Kapteyn HC, Murnane MM, Hernández-García C. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin-orbit momentum conservation. Nat Photon. 2019;13(2):123–30.
    [12] Ossiander M, Meretska ML, Hampel HK, Lim SWD, Knefz N, Jauk T, Capasso F, Schultze M. Extreme ultraviolet metalens by vacuum guiding. Science. 2023;380(6640):59–63.
    [13] Kipp L, Skibowski M, Johnson RLM, Berndt R, Adelung R, Harm S, Seemann R. Sharper images by focusing soft Xrays with photon sieves. Nature. 2001;414(6860):184–8.
    [14] Padgett M, Bowman R. Tweezers with a twist. Nat Photon. 2011;5(6):343–8.
    [15] Wagner C, Harned N. EUV lithography: Lithography gets extreme. Nat Photon. 2010;4(1):24–6.
    [16] Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl. 2019;8:90–1–29.
    [17] Hernandez-Garcıa C, Picon A, San Roman J, Plaja L. Attosecond Extreme Ultraviolet Vortices from High-Order Harmonic Generation. Light Sci Appl. 2013;111(8):083602–1–5.
    [18] Pandey AK, de las Heras A, Larrieu T, San Román J, Serrano J, Plaja L, Baynard E, Pittman M, Dovillaire G, Kazamias S, Hernández-García C, Guilbaud O. Characterization of Extreme-Ultraviolet Vortex Beams with very high topological charge. ACS Photon. 2022;9(3):944–51.
    [19] Kong F, Zhang C, Bouchard F, Li Z, Brown GG, Ko DH, Hammond TJ, Arissian L, Boyd RW, Karimi E, Corkum PB. Controlling the orbital angular momentum of high harmonic vortices. Nat Commun. 2017;8:14970–1–6.
    [20] Rego L, Dorney KM, Brooks NJ, Nguyen QL, Liao C-T, San Román J, Couch DE, Liu A, Pisanty E, Lewenstein M, Plaja L, Kapteyn HC, Murnane MM, Hernández-García C. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science. 2019;364(6447):1253–7.
    [21] Xu S, Ma Y, Zhang J, Zhou S, Zhu J. Multiplanar imaging properties of Fermat-spiral Greek-ladder sieves with different point spread functions. Opt Commun. 2019;434:191–5.
    [22] Huang Q, Lu X, Zhang H, Wang Z, Yang Y, Zhan Q, Cai Y, Zhao C. Economical generation of high-quality optical vortices with gradual-width Fermat spiral slit mask. Sci China Phys Mech Astron. 2023;66(4):244211–1–9.
    [23] Ebrahimi H, Sabatyan A. Multi-region spiral photon sieve to produce tailorable multiple vortex. Opt Laser Technol. 2020;126:106137–1–6.
    [24] Fraczek E, Popiołek-Masajada A, Szczepaniak S. Characterization of the Vortex Beam by Fermat’s Spiral. Photonics. 2020;7(4):102–6.
    [25] Bai Y, Lv H, Fu X, Yang Y. Vortex beam: generation and detection of orbital angular momentum [Invited]. Chin Opt Lett. 2022;20(1):012601–1–15.
    [26] Yang Y, Thirunavukkarasu G, Babiker M, Yuan J. Orbital-Angular-Momentum Mode Selection by Rotationally Symmetric Superposition of Chiral States with Application to Electron Vortex Beams. Phys Rev Lett. 2017;119(9):094802–1–5.
    [27] Liu R, Li F, Padgett MJ, Phillips DB. Generalized photon sieves: fine control of complex fields with simple pinhole arrays. Optica. 2015;2(12):1028–36.
    [28] Huang K, Liu H, Garcia-Vidal FJ, Hong M, Lukyanchuk B, Teng J, Qiu C-W. Ultrahigh-capacity photonic nanosieves operating in visible light. Nat Commun. 2015;6:7059.
    [29] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes. Opt Lett. 2005;30(8):833–5.
    [30] Zhao Y, Liu T, Zhang W, Li W, Cui H. Demonstration of gain saturation and double-pass amplification of a 69.8nm laser pumped by capillary discharge. Opt Lett. 2016;41(16):3779–82.
    [31] Zhao Y, Zhao D, An B, Li L, Bai Y, Cui H. Demonstration of double-pass amplification of gain saturated 46.9 nm laser. Opt Commun. 2022;506:127571.
  • 加载中
图(1)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  1
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-02
  • 录用日期:  2024-04-08
  • 修回日期:  2024-03-27
  • 网络出版日期:  2024-04-25

目录

    /

    返回文章
    返回